It is shown that the nonideality coefficient m actually depends on the electron temperature Te, and the hole temperature Th. We get more general expression for the nonideality coefficient, taking into account the conc...It is shown that the nonideality coefficient m actually depends on the electron temperature Te, and the hole temperature Th. We get more general expression for the nonideality coefficient, taking into account the concentration of electrons and holes, as well as their temperature, coefficient and diffusion length, the temperature of the phonons, the applied voltage, and the height of the potential barrier.展开更多
Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS reco...Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.展开更多
We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Her...We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Here,we rederive the expression for the perturbed Lagrangian within the framework of nonideal MHD using the ordering system for the low-frequency largescale MHD in a low-beta plasma.The obtained perturbed Lagrangian is consistent with Chen's gyrokinetic theory[Chen L and Zonca F 2016 Rev.Mod.Phys.88015008],where the terms related to the field curvature and gradient are small quantities of higher order and thus negligible.As the perturbed Lagrangian has been widely used in the literature to calculate the plasma nonadiabatic response in low-frequency MHD applications,this finding may have a significant impact on the understanding of the kinetic driving and dissipative mechanisms of MHD instabilities and the plasma response to electromagnetic perturbations in fusion plasmas.展开更多
In order to find out the detonation mechanism of intermolecular explosives (IMX), the EAR15 explosive is studied by the experiments and numerical modeling. The results show that EAR15 is a nonideal explosive, since in...In order to find out the detonation mechanism of intermolecular explosives (IMX), the EAR15 explosive is studied by the experiments and numerical modeling. The results show that EAR15 is a nonideal explosive, since in the detonation reaction zone both reacted and unreacted ammonium nitrate (AN) absorb the energy through the interface, resulting in the characteristic of nonideal detonation. In our tests, only 19%-49% active AN takes part in reaction, the rest behaves as the inert at the detonation wave front.展开更多
The present paper narrates the influence of nonideality of externally controlled components on multiple-steady-state transitions studied by using the regular solution model. Under certain conditions the splitting of t...The present paper narrates the influence of nonideality of externally controlled components on multiple-steady-state transitions studied by using the regular solution model. Under certain conditions the splitting of the original cusp causes 'twin' bifurcation points accompanied by isolas which could shrink to an elliptic singular point or a cusp, or even collapse to a hyperbolic singular point in the different cases.展开更多
The particle structure of a complex system has been explored through a unique Evans' s homogenous nonequilibrium molecular dynamics(HNEMD) simulation technique. The crystalline order–disorder structures(OD-struct...The particle structure of a complex system has been explored through a unique Evans' s homogenous nonequilibrium molecular dynamics(HNEMD) simulation technique. The crystalline order–disorder structures(OD-structures) and the corresponding energies of three-dimensional(3 D) nonideal complex systems(NICSs) have been measured over a wide range of plasma states(■, κ) for a body-centered cubic(BCC) structure. The projected technique provides accurate ODstructures with fast convergence and applicable to very small size effect for different temperatures(≡ 1/■) and constant force field(F~*) values. The OD-structure obtained through HNEMD approach is found to be reasonable agreement and more reliable than those earlier identified by simulation approaches and experimental data of NICSs. New simulations of OD-structures show that dusty plasma remains in crystalline(strongly coupled) state at lower temperature and constant F*values, for the whole simulation runs. Our investigations show that the crystalline structure is changed and the particle structure switches from intermediate to disorder(nonideal gaseous) state with an increase of the system's temperature. It has been shown that the long range order shifts toward lower temperature with increasing κ. The presented technique exhibits that the potential energy has a maximum value when the dusty plasma remains in crystalline states(low temperatures),which confirms earlier 3 D simulation results.展开更多
The nonideal effects in a quantum field-effect directional coupler where two quantum wires are coupled through a finite potential barrier are studied by adopting the lattice Green function method. The results show tha...The nonideal effects in a quantum field-effect directional coupler where two quantum wires are coupled through a finite potential barrier are studied by adopting the lattice Green function method. The results show that the electron energy distribution, asymmetric geometry and finite temperature all have obvious influence on the electron transfer of the coupler. Only for the electrons with energies in a certain region, can the complete periodic transfer between two quantum wires take place. The conductance of these electrons as a function of the barrier length and potential height exhibits a fine periodic or quasi-periodic pattern. For the electrons with energies beyond the region, however, the complete periodic transfer does not hold any more since many irregular oscillations are superimposed on the conductance profile. In addition, the finite temperature and asymmetric geometry both can reduce the electron transfer efficiency.展开更多
The problem of finding polariton modes (necessary for calculating gyrotropic characteristics) in space-dispersed superlattices is not yet solved. At the same time the specified quantities can be approximately evaluate...The problem of finding polariton modes (necessary for calculating gyrotropic characteristics) in space-dispersed superlattices is not yet solved. At the same time the specified quantities can be approximately evaluated if the widths of layers comprising a multilayer material are much bigger then the characteristic scales of space dispersion. In such a case the contribution of individual layers to gyrotropy can be regarded as independed. Thus the corresponding optical quantities can be expressed through the layers' gyrotropic characteristics. This approach is applied to calculate the specific rotation angle of plane of polarization of light propagating through a nonideal 1D-superlattice, which varies in composition as well as in layers' width.展开更多
This paper addresses a set of ideological tensions involving the classification of agential kinds,which I see as the methodological and conceptual core of the sentience discourse.Specifically,I consider ideals involve...This paper addresses a set of ideological tensions involving the classification of agential kinds,which I see as the methodological and conceptual core of the sentience discourse.Specifically,I consider ideals involved in the classification of biological and artifactual kinds,and ideals related to agency,identity,and value.These ideals frame the background against which sentience in Artificial Intelligence(AI)is theorized and debated,a framework I call the AIdeal.To make this framework explicit,I review the historical discourse on sentience as it appears in ancient,early modern,and the 20th century philosophy,paying special attention to how these ideals are projected onto artificial agents.I argue that tensions among these ideals create conditions where artificial sentience is both necessary and impossible,resulting in a crisis of ideology.Moving past this crisis does not require a satisfying resolution among competing ideals,but instead requires a shift in focus to the material conditions and actual practices in which these ideals operate.Following Charles Mills,I sketch a nonideal approach to AI and artificial sentience that seeks to loosen the grip of ideology on the discourse.Specifically,I propose a notion of participation that deflates the sentience discourse in AI and shifts focus to the material conditions in which sociotechnical networks operate.展开更多
Based on a simple nonideal chemical reaction model, the closed system with reversible nonideal reactions and illumination is shown to be able to exhibit sustained oscillation. The essential points in the occurrence of...Based on a simple nonideal chemical reaction model, the closed system with reversible nonideal reactions and illumination is shown to be able to exhibit sustained oscillation. The essential points in the occurrence of such oscillations are the nonideality of reacting media, which gives rise to multiple chemical equilibria, and the energy flow through illumination and heat conduction, which gives rise to spontaneous transitions repeatedly between the multiple equilibrium states. During the oscillation, reacting media undergo only reversible chemical transformation and all irreversibilities are restricted to the coupling of the system to external world. This oscillation provides an example of the so-called endoreversible machine and a possible way to convert radiation energy of the light directly into mechanical energy.展开更多
The wideband electromagnetic characteristics of missile targets in midcourse are the foundation of midcourse attack-defense confrontation. This paper proposes a novel electromagnetic scattering modeling method for mid...The wideband electromagnetic characteristics of missile targets in midcourse are the foundation of midcourse attack-defense confrontation. This paper proposes a novel electromagnetic scattering modeling method for midcourse targets based on a pre- cise scattering center model, in which the nonideal scattering phenomenon, shielding effect and micro-motion are taken into consideration for the first time. Firstly, a precise scattering center model incorporating both the sliding scattering and artist- tropic scattering is established. Then the change rule of the target attitude is generalized, and a checking method of the scatter- ing center shielding effect is proposed for rotationally symmetric targets. Afterwards, a novel dynamic electromagnetic scat- tering model is presented, where the scattering center model updates along with the variation of the target attitude and can characterize the change of the electromagnetic characteristics of midcourse targets exactly. Finally, in light of the established model, the dynamic electromagnetic characteristics within different attitude angle bounds are analyzed by stages, and some useful conclusions are obtained. Experiment results from the measured data in anechoic chamber verify the validity of the proposed modeling method and relevant analysis.展开更多
With the development of device engineering and molecular design,organic field effect transistors(OFETs)with high mobility over 10 cm2 V-1-s-1 have been reported.However,the nonideal doubleslope effect has been frequen...With the development of device engineering and molecular design,organic field effect transistors(OFETs)with high mobility over 10 cm2 V-1-s-1 have been reported.However,the nonideal doubleslope effect has been frequently observed in some of these OFETs,which makes it difficult to extract the intrinsic mobility OFETs accurately,impeding the further application of them.In this review,the origin of the nonideal double-slope effect has been discussed thoroughly,with affecting factors such as contact resistance,charge trapping,disorder effects and coulombic interactions considered.According to these discussions and the understanding of the mechanism behind double-slope effect,several strategies have been proposed to realize ideal OFETs,such as doping,molecular engineering,charge trapping reduction,and contact engineering.After that,some novel devices based on the nonideal double-slope behaviors have been also introduced.展开更多
Calculation of assembly clearance is the basis of analysis on assembly problems,and the real assembly surface is the nonideal surface.In this paper,the concept of assembly clearance on nonideal surface is defined and...Calculation of assembly clearance is the basis of analysis on assembly problems,and the real assembly surface is the nonideal surface.In this paper,the concept of assembly clearance on nonideal surface is defined and the calculation algorithm of assembly clearance is designed.Based on the calculation,the concept of clearance surface is put forward to express the distribution of assembly clearance on nonideal surface as it can assist the analysis of assembly problems.Finally,the effectiveness of the algorithm is verified by the calculation of the assembly clearance between the surfaces of piston and cylinder.展开更多
文摘It is shown that the nonideality coefficient m actually depends on the electron temperature Te, and the hole temperature Th. We get more general expression for the nonideality coefficient, taking into account the concentration of electrons and holes, as well as their temperature, coefficient and diffusion length, the temperature of the phonons, the applied voltage, and the height of the potential barrier.
基金conducted within the state assignment of the Ministry of Science and Higher Education for universities(Project No.FZRR-2023-0009).
文摘Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.
基金supported by the National Magnetic Confinement Fusion Energy Program of China(No.2019YFE03030000)National Natural Science Foundation of China(Nos.11905253 and U19A20113)。
文摘We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Here,we rederive the expression for the perturbed Lagrangian within the framework of nonideal MHD using the ordering system for the low-frequency largescale MHD in a low-beta plasma.The obtained perturbed Lagrangian is consistent with Chen's gyrokinetic theory[Chen L and Zonca F 2016 Rev.Mod.Phys.88015008],where the terms related to the field curvature and gradient are small quantities of higher order and thus negligible.As the perturbed Lagrangian has been widely used in the literature to calculate the plasma nonadiabatic response in low-frequency MHD applications,this finding may have a significant impact on the understanding of the kinetic driving and dissipative mechanisms of MHD instabilities and the plasma response to electromagnetic perturbations in fusion plasmas.
文摘In order to find out the detonation mechanism of intermolecular explosives (IMX), the EAR15 explosive is studied by the experiments and numerical modeling. The results show that EAR15 is a nonideal explosive, since in the detonation reaction zone both reacted and unreacted ammonium nitrate (AN) absorb the energy through the interface, resulting in the characteristic of nonideal detonation. In our tests, only 19%-49% active AN takes part in reaction, the rest behaves as the inert at the detonation wave front.
文摘The present paper narrates the influence of nonideality of externally controlled components on multiple-steady-state transitions studied by using the regular solution model. Under certain conditions the splitting of the original cusp causes 'twin' bifurcation points accompanied by isolas which could shrink to an elliptic singular point or a cusp, or even collapse to a hyperbolic singular point in the different cases.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11505286 and 11805272)
文摘The particle structure of a complex system has been explored through a unique Evans' s homogenous nonequilibrium molecular dynamics(HNEMD) simulation technique. The crystalline order–disorder structures(OD-structures) and the corresponding energies of three-dimensional(3 D) nonideal complex systems(NICSs) have been measured over a wide range of plasma states(■, κ) for a body-centered cubic(BCC) structure. The projected technique provides accurate ODstructures with fast convergence and applicable to very small size effect for different temperatures(≡ 1/■) and constant force field(F~*) values. The OD-structure obtained through HNEMD approach is found to be reasonable agreement and more reliable than those earlier identified by simulation approaches and experimental data of NICSs. New simulations of OD-structures show that dusty plasma remains in crystalline(strongly coupled) state at lower temperature and constant F*values, for the whole simulation runs. Our investigations show that the crystalline structure is changed and the particle structure switches from intermediate to disorder(nonideal gaseous) state with an increase of the system's temperature. It has been shown that the long range order shifts toward lower temperature with increasing κ. The presented technique exhibits that the potential energy has a maximum value when the dusty plasma remains in crystalline states(low temperatures),which confirms earlier 3 D simulation results.
文摘The nonideal effects in a quantum field-effect directional coupler where two quantum wires are coupled through a finite potential barrier are studied by adopting the lattice Green function method. The results show that the electron energy distribution, asymmetric geometry and finite temperature all have obvious influence on the electron transfer of the coupler. Only for the electrons with energies in a certain region, can the complete periodic transfer between two quantum wires take place. The conductance of these electrons as a function of the barrier length and potential height exhibits a fine periodic or quasi-periodic pattern. For the electrons with energies beyond the region, however, the complete periodic transfer does not hold any more since many irregular oscillations are superimposed on the conductance profile. In addition, the finite temperature and asymmetric geometry both can reduce the electron transfer efficiency.
文摘The problem of finding polariton modes (necessary for calculating gyrotropic characteristics) in space-dispersed superlattices is not yet solved. At the same time the specified quantities can be approximately evaluated if the widths of layers comprising a multilayer material are much bigger then the characteristic scales of space dispersion. In such a case the contribution of individual layers to gyrotropy can be regarded as independed. Thus the corresponding optical quantities can be expressed through the layers' gyrotropic characteristics. This approach is applied to calculate the specific rotation angle of plane of polarization of light propagating through a nonideal 1D-superlattice, which varies in composition as well as in layers' width.
文摘This paper addresses a set of ideological tensions involving the classification of agential kinds,which I see as the methodological and conceptual core of the sentience discourse.Specifically,I consider ideals involved in the classification of biological and artifactual kinds,and ideals related to agency,identity,and value.These ideals frame the background against which sentience in Artificial Intelligence(AI)is theorized and debated,a framework I call the AIdeal.To make this framework explicit,I review the historical discourse on sentience as it appears in ancient,early modern,and the 20th century philosophy,paying special attention to how these ideals are projected onto artificial agents.I argue that tensions among these ideals create conditions where artificial sentience is both necessary and impossible,resulting in a crisis of ideology.Moving past this crisis does not require a satisfying resolution among competing ideals,but instead requires a shift in focus to the material conditions and actual practices in which these ideals operate.Following Charles Mills,I sketch a nonideal approach to AI and artificial sentience that seeks to loosen the grip of ideology on the discourse.Specifically,I propose a notion of participation that deflates the sentience discourse in AI and shifts focus to the material conditions in which sociotechnical networks operate.
基金Project supported by the National Natural Science Foundation of China.
文摘Based on a simple nonideal chemical reaction model, the closed system with reversible nonideal reactions and illumination is shown to be able to exhibit sustained oscillation. The essential points in the occurrence of such oscillations are the nonideality of reacting media, which gives rise to multiple chemical equilibria, and the energy flow through illumination and heat conduction, which gives rise to spontaneous transitions repeatedly between the multiple equilibrium states. During the oscillation, reacting media undergo only reversible chemical transformation and all irreversibilities are restricted to the coupling of the system to external world. This oscillation provides an example of the so-called endoreversible machine and a possible way to convert radiation energy of the light directly into mechanical energy.
基金supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61025006)
文摘The wideband electromagnetic characteristics of missile targets in midcourse are the foundation of midcourse attack-defense confrontation. This paper proposes a novel electromagnetic scattering modeling method for midcourse targets based on a pre- cise scattering center model, in which the nonideal scattering phenomenon, shielding effect and micro-motion are taken into consideration for the first time. Firstly, a precise scattering center model incorporating both the sliding scattering and artist- tropic scattering is established. Then the change rule of the target attitude is generalized, and a checking method of the scatter- ing center shielding effect is proposed for rotationally symmetric targets. Afterwards, a novel dynamic electromagnetic scat- tering model is presented, where the scattering center model updates along with the variation of the target attitude and can characterize the change of the electromagnetic characteristics of midcourse targets exactly. Finally, in light of the established model, the dynamic electromagnetic characteristics within different attitude angle bounds are analyzed by stages, and some useful conclusions are obtained. Experiment results from the measured data in anechoic chamber verify the validity of the proposed modeling method and relevant analysis.
基金supported by the Ministry of Science and Technology of China(Grant No.2017YFA0204704)the National Natural Science Foundation of China(Grant Nos.21873108,21805284)+1 种基金the Chinese Academy of Sciences(Hundred Talents Plan)the Strategic Priority Research Program(Grant No.XDB30000000).
文摘With the development of device engineering and molecular design,organic field effect transistors(OFETs)with high mobility over 10 cm2 V-1-s-1 have been reported.However,the nonideal doubleslope effect has been frequently observed in some of these OFETs,which makes it difficult to extract the intrinsic mobility OFETs accurately,impeding the further application of them.In this review,the origin of the nonideal double-slope effect has been discussed thoroughly,with affecting factors such as contact resistance,charge trapping,disorder effects and coulombic interactions considered.According to these discussions and the understanding of the mechanism behind double-slope effect,several strategies have been proposed to realize ideal OFETs,such as doping,molecular engineering,charge trapping reduction,and contact engineering.After that,some novel devices based on the nonideal double-slope behaviors have been also introduced.
基金National Natural Science Foundation of China(Grant No.51575031)the key program of the Engineering Research Center of Complex Product Advanced Manufacturing System,Ministry of Education.
文摘Calculation of assembly clearance is the basis of analysis on assembly problems,and the real assembly surface is the nonideal surface.In this paper,the concept of assembly clearance on nonideal surface is defined and the calculation algorithm of assembly clearance is designed.Based on the calculation,the concept of clearance surface is put forward to express the distribution of assembly clearance on nonideal surface as it can assist the analysis of assembly problems.Finally,the effectiveness of the algorithm is verified by the calculation of the assembly clearance between the surfaces of piston and cylinder.