This paper considers the Bayes and hierarchical Bayes approaches for analyzing clinical data on response times with available values for one or more concomitant variables. Response times are assumed to follow simple e...This paper considers the Bayes and hierarchical Bayes approaches for analyzing clinical data on response times with available values for one or more concomitant variables. Response times are assumed to follow simple exponential distributions, with a different parameter for each patient. The analyses are carried out in case of progressive censoring assuming squared error loss function and gamma distribution as priors and hyperpriors. The possibilities of using the methodology in more general situations like dose- response modeling have also been explored. Bayesian estimators derived in this paper are applied to lung cancer data set with concomitant variables.展开更多
When the event of interest never occurs for a proportion of subjects during the study period, survival models with a cure fraction are more appropriate in analyzing this type of data. Considering the non-linear relati...When the event of interest never occurs for a proportion of subjects during the study period, survival models with a cure fraction are more appropriate in analyzing this type of data. Considering the non-linear relationship between response variable and covariates, we propose a class of generalized transformation models motivated by Zeng et al. [1] transformed proportional time cure model, in which fractional polynomials are used instead of the simple linear combination of the covariates. Statistical properties of the proposed models are investigated, including identifiability of the parameters, asymptotic consistency, and asymptotic normality of the estimated regression coefficients. A simulation study is carried out to examine the performance of the power selection procedure. The generalized transformation cure rate models are applied to the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study (NHANES1) for the purpose of examining the relationship between survival time of patients and several risk factors.展开更多
文摘This paper considers the Bayes and hierarchical Bayes approaches for analyzing clinical data on response times with available values for one or more concomitant variables. Response times are assumed to follow simple exponential distributions, with a different parameter for each patient. The analyses are carried out in case of progressive censoring assuming squared error loss function and gamma distribution as priors and hyperpriors. The possibilities of using the methodology in more general situations like dose- response modeling have also been explored. Bayesian estimators derived in this paper are applied to lung cancer data set with concomitant variables.
文摘When the event of interest never occurs for a proportion of subjects during the study period, survival models with a cure fraction are more appropriate in analyzing this type of data. Considering the non-linear relationship between response variable and covariates, we propose a class of generalized transformation models motivated by Zeng et al. [1] transformed proportional time cure model, in which fractional polynomials are used instead of the simple linear combination of the covariates. Statistical properties of the proposed models are investigated, including identifiability of the parameters, asymptotic consistency, and asymptotic normality of the estimated regression coefficients. A simulation study is carried out to examine the performance of the power selection procedure. The generalized transformation cure rate models are applied to the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study (NHANES1) for the purpose of examining the relationship between survival time of patients and several risk factors.