We propose and experimentally demonstrate a noniterative diffractive imaging method for reconstructing the complex-valued transmission function of an object illuminated by spatially partially coherent light from the f...We propose and experimentally demonstrate a noniterative diffractive imaging method for reconstructing the complex-valued transmission function of an object illuminated by spatially partially coherent light from the far-field diffraction pattern.Our method is based on a pinhole array mask,which is specially designed such that the correlation function in the mask plane can be obtained directly by inverse Fourier transforming the diffraction pattern.Compared to the traditional iterative diffractive imaging methods using spatially partially coherent illumination,our method is noniterative and robust to the degradation of the spatial coherence of the illumination.In addition to diffractive imaging,the proposed method can also be applied to spatial coherence property characterization,e.g.,free-space optical communication and optical coherence singularity measurement.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.11774250 , 91750201)the National Natural Science Fund for Distinguished Young Scholars(No.11525418)the sponsorship of Jiangsu Overseas Research and Training Program for Prominent Young and Middle-aged University Teachers and Presidents.This work is also part of the research program“Novel design shapes for complex optical systems,”with Project No.12797,which is(partly)financed by the Netherlands Organization for Scientific Research(NWO).
文摘We propose and experimentally demonstrate a noniterative diffractive imaging method for reconstructing the complex-valued transmission function of an object illuminated by spatially partially coherent light from the far-field diffraction pattern.Our method is based on a pinhole array mask,which is specially designed such that the correlation function in the mask plane can be obtained directly by inverse Fourier transforming the diffraction pattern.Compared to the traditional iterative diffractive imaging methods using spatially partially coherent illumination,our method is noniterative and robust to the degradation of the spatial coherence of the illumination.In addition to diffractive imaging,the proposed method can also be applied to spatial coherence property characterization,e.g.,free-space optical communication and optical coherence singularity measurement.