Entanglement in quantum theory is a peculiar concept to scientists. With this concept we are forced to re-consider the cluster property which means that one event is irrelevant to another event when they are fully far...Entanglement in quantum theory is a peculiar concept to scientists. With this concept we are forced to re-consider the cluster property which means that one event is irrelevant to another event when they are fully far away. In the recent works we showed that the quasi-degenerate states induce the violation of cluster property in antiferromagnets when the continuous symmetry breaks spontaneously. We expect that the violation of cluster property will be observed in other materials too, because the spontaneous symmetry breaking is found in many systems such as the high temperature superconductors and the superfluidity. In order to examine the cluster property for these materials, we studied a quantum nonlinear sigma model with U(1) symmetry in the previous work. There we showed that the model does have quasi-degenerate states. In this paper we study the quantum nonlinear sigma model with SU(2) symmetry. In our approach we first define the quantum system on the lattice and then adopt the representation where the kinetic term is diagonalized. Since we have no definition on the conjugate variable to the angle variable, we use the angular momentum operators instead for the kinetic term. In this representation we introduce the states with the fixed quantum numbers and carry out numerical calculations using quantum Monte Carlo methods and other methods. Through analytical and numerical studies, we conclude that the energy of the quasi-degenerate state is proportional to the squared total angular momentum as well as to the inverse of the lattice size.展开更多
In this paper, the nonlinear free vibration behaviors of the piezoelectric semiconductor(PS) doubly-curved shell resting on the Pasternak foundation are studied within the framework of the nonlinear drift-diffusion(NL...In this paper, the nonlinear free vibration behaviors of the piezoelectric semiconductor(PS) doubly-curved shell resting on the Pasternak foundation are studied within the framework of the nonlinear drift-diffusion(NLDD) model and the first-order shear deformation theory. The nonlinear constitutive relations are presented, and the strain energy, kinetic energy, and virtual work of the PS doubly-curved shell are derived.Based on Hamilton's principle as well as the condition of charge continuity, the nonlinear governing equations are achieved, and then these equations are solved by means of an efficient iteration method. Several numerical examples are given to show the effect of the nonlinear drift current, elastic foundation parameters as well as geometric parameters on the nonlinear vibration frequency, and the damping characteristic of the PS doublycurved shell. The main innovations of the manuscript are that the difference between the linearized drift-diffusion(LDD) model and the NLDD model is revealed, and an effective method is proposed to select a proper initial electron concentration for the LDD model.展开更多
Using the Faddeev-Jackiw (FJ) quantization method, this paper treats the CP^1nonlinear sigma model with ChernSimons term. The generalized FJ brackets are obtained in the framework of this quantization method, which ...Using the Faddeev-Jackiw (FJ) quantization method, this paper treats the CP^1nonlinear sigma model with ChernSimons term. The generalized FJ brackets are obtained in the framework of this quantization method, which agree with the results obtained by using the Dirac's method.展开更多
Entanglement in quantum theory is a concept that has confused many scientists. This concept implies that the cluster property, which means no relations between sufficiently separated two events, is non-trivial. In the...Entanglement in quantum theory is a concept that has confused many scientists. This concept implies that the cluster property, which means no relations between sufficiently separated two events, is non-trivial. In the works for some quantum spin systems, which have been recently published by the author, extensive and quantitative examinations were made about the violation of cluster property in the correlation function of the spin operator. The previous study of these quantum antiferromagnets showed that this violation is induced by the degenerate states in the systems where the continuous symmetry spontaneously breaks. Since this breaking is found in many materials such as the high temperature superconductors and the superfluidity, it is an important question whether we can observe the violation of the cluster property in them. As a step to answer this question we study a quantum nonlinear sigma model with U(1) symmetry in this paper. It is well known that this model, which has been derived as an effective model of the quantum spin systems, can also be applied to investigations of many materials. Notifying that the existence of the degenerate states is essential for the violation, we made numerical calculations in addition to theoretical arguments to find these states in the nonlinear sigma model. Then, successfully finding the degenerate states in the model, we came to a conclusion that there is a chance to observe the violation of cluster property in many materials to which the nonlinear sigma model applies.展开更多
The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local a...The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local approximation.The LQR is an excellent method for developing a controller for nonlinear systems.It provides optimal feedback to make the closed-loop system robust and stable,rejecting external disturbances.Model-based optimal controller for a nonlinear system such as a rotatory inverted pendulum has not been designed and implemented using Newton-Euler,Lagrange method,and local approximation.Therefore,implementing LQR to an underactuated nonlinear system was vital to design a stable controller.A mathematical model has been developed for the controller design by utilizing the Newton-Euler,Lagrange method.The nonlinear model has been linearized around an equilibrium point.Linear and nonlinear models have been compared to find the range in which linear and nonlinear models’behaviour is similar.MATLAB LQR function and system dynamics have been used to estimate the controller parameters.For the performance evaluation of the designed controller,Simulink has been used.Linear and nonlinear models have been simulated along with the designed controller.Simulations have been performed for the designed controller over the linear and nonlinear system under different conditions through varying system variables.The results show that the system is stable and robust enough to act against external disturbances.The controller maintains the rotary inverted pendulum in an upright position and rejects disruptions like falling under gravitational force or any external disturbance by adjusting the rotation of the horizontal link in both linear and nonlinear environments in a specific range.The controller has been practically designed and implemented.It is vivid from the results that the controller is robust enough to reject the disturbances in milliseconds and keeps the pendulum arm deflection angle to zero degrees.展开更多
The impact of nonlinear stability and instability on the validity of tangent linear model (TLM) is investigated by comparing its results with those produced by the nonlinear model (NLM) with the identical initial pert...The impact of nonlinear stability and instability on the validity of tangent linear model (TLM) is investigated by comparing its results with those produced by the nonlinear model (NLM) with the identical initial perturbations. The evolutions of different initial perturbations superposed on the nonlinearly stable and unstable basic flows are examined using the two-dimensional quasi-geostrophic models of double periodic-boundary condition and rigid boundary condition. The results indicate that the valid time period of TLM, during which TLM can be utilized to approximate NLM with given accuracy, varies with the magnitudes of the perturbations and the nonlinear stability and instability of the basic flows. The larger the magnitude of the perturbation is, the shorter the valid time period. The more nonlinearly unstable the basic flow is, the shorter the valid time period of TLM. With the double—periodic condition the valid period of the TLM is shorter than that with the rigid—boundary condition. Key words Nonlinear stability and instability - Tangent linear model (TLM) - Validity This work was supported by the National Key Basic Research Project “Research on the Formation Mechanism and Prediction Theory of Severe Synoptic Disasters in China” (No.G1998040910) and the National Natural Science Foundation of China (No.49775262 and No.49823002).展开更多
In order to design a nonlinear controller for small-scale autonomous helicopters, the dynamic characteristics of a model helicopter are investigated, and an integrated nonlinear model of a small-scale helicopter for h...In order to design a nonlinear controller for small-scale autonomous helicopters, the dynamic characteristics of a model helicopter are investigated, and an integrated nonlinear model of a small-scale helicopter for hovering control is presented. It is proved that the nonlinear system of the small-scale helicopter can be transformed to a linear system using the dynamic feedback linearization technique. Finally, simulations are carried out to validate the nonlinear controller.展开更多
An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the ...An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.展开更多
Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approa...Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach.展开更多
In order to design linear controller for nonlinear systems,a simple but efficient method of modeling a nonlinear system was proposed by means of multiple linearized models at different operating points in the entire r...In order to design linear controller for nonlinear systems,a simple but efficient method of modeling a nonlinear system was proposed by means of multiple linearized models at different operating points in the entire range of the expected changes of the operating points.The original nonlinear system was described by linear combination of these multiple linearized models,with the linear combination parameters being identified on line based on least squares method.Model Predictive Control,an optimization based technique,was used to design the linear controller.A sufficient condition for ensuring the existence of a linear controller for the original nonlinear system was also given.Good performance indicated by two simulated examples confirms the usefulness of the proposed method.展开更多
Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature ...Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.展开更多
A nonlinear modeling framework is presented for an oceanographic unmanned aerial vehicle (UAV) by using symbolic modeling and linear fractional transformation (LFT) techniques . Consequently, an exact nonlinear sy...A nonlinear modeling framework is presented for an oceanographic unmanned aerial vehicle (UAV) by using symbolic modeling and linear fractional transformation (LFT) techniques . Consequently, an exact nonlinear symbolic LFT model of the UAV is derived in a standard M-A form where M represents the nominal, known, part of the system and A contains the time-varying, uncertain and nonlinear components. The advantages of the proposed modeling approach are that: it not only provides an ideal starting point to obtain various final design-oriented models through subse- quent assumptions and simplifications, but also it facilitates the control system analysis with models of different levels of fidelity/complexity. Furthermore, a linearized symbolic LFT model of the UAV is proposed based on the LFT differentiation, which is amenable directly to a sophisticated linear ro- bust control strategy such as μ synthesis/analysis. Both of the derived LFT models are validated with the original nonlinear model in time domain. Simulation results show the effectiveness of the pro- posed algorithm.展开更多
A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap- proach employs a neural network, whose activation functions satisfy the sector conditions, to appro...A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap- proach employs a neural network, whose activation functions satisfy the sector conditions, to approximate the nonlinear system. To improve the approximation performance and to account for the parameter perturbations during operation, a novel neural network model termed standard neural network model (SNNM) is proposed. If the uncertainty is bounded, the SNNM is called an interval SNNM (ISNNM). A state-feedback control law is designed for the nonlinear system modelled by an ISNNM such that the closed-loop system is globally, robustly, and asymptotically stable. The control design equations are shown to be a set of linear matrix inequalities (LMIs) that can be easily solved by available convex optimization algorithms. An example is given to illustrate the control design procedure, and the performance of the proposed approach is compared with that of a related method reported in literature.展开更多
A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constrain...A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constraints are shown to be a set of linear matrix inequalities (LMIs), which can be easily solved by the MATLAB LMI Control Toolbox to determine the control law. Most recurrent neural networks (including the chaotic neural network) and nonlinear systems modeled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be stabilization controllers synthesized in the framework of a unified SNNM. Finally, three numerical examples are provided to illustrate the design developed in this paper.展开更多
We compare the static nucleon properties in the Chiral Perturbation Theory (χPT) and the Linear Sigma Model (LSM). We consider a chiral model for the nucleon which is based on the linear sigma model with scalar-isosc...We compare the static nucleon properties in the Chiral Perturbation Theory (χPT) and the Linear Sigma Model (LSM). We consider a chiral model for the nucleon which is based on the linear sigma model with scalar-isoscalar and scalarisovector mesons coupled to quarks. We have solved the field equations in the mean field approximation for the hedgehog baryon state with different sets of model parameters. A good investigation of some static nucleon properties is obtained by the LSM.展开更多
For a type of high⁃order discrete⁃time nonlinear systems(HDNS)whose system models are undefined,a model⁃free predictive control(MFPC)algorithm is proposed in this paper.At first,an estimation model is given by the imp...For a type of high⁃order discrete⁃time nonlinear systems(HDNS)whose system models are undefined,a model⁃free predictive control(MFPC)algorithm is proposed in this paper.At first,an estimation model is given by the improved projection algorithm to approach the controlled nonlinear system.Then,on the basis of the estimation model,a predictive controller is designed by solving the finite time domain rolling optimization quadratic function,and the controller’s explicit analytic solution is also obtained.Furthermore,the closed⁃loop system's stability can be ensured.Finally,the results of simulation reveal that the presented control strategy has a faster convergence speed as well as more stable dynamic property compared with the model⁃free sliding mode control(MFSC).展开更多
This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transf...This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.展开更多
This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fau...This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fault diagnosis problem through extracting nonlinear features. When the on-line fault diagnosis task is in progress, a locally linear model is firstly built at the current fault sample. According to the basic idea of reconstruction based contribution(RBC), the propagation of fault information is described by using back-propagation(BP) algorithm. Then, a contribution index is established to measure the correlation between the variable and the fault, and the final diagnosis result is obtained by searching variables with large contributions. The smearing effect, which is an important factor affecting the performance of fault diagnosis, can be suppressed as well,and the theoretical analysis reveals that the correct diagnosis can be guaranteed by LLBBC. Finally, the feasibility and effectiveness of the proposed method are verified through a nonlinear numerical example and the Tennessee Eastman benchmark process.展开更多
The present nonlinear model reduction methods unfit the nonlinear benchmark buildings as their vibration equations belong to a non-affine system. Meanwhile, the controllers designed directly by the nonlinear control s...The present nonlinear model reduction methods unfit the nonlinear benchmark buildings as their vibration equations belong to a non-affine system. Meanwhile, the controllers designed directly by the nonlinear control strategy have a high order, and they are difficult to be applied actually. Therefore, a new active vibration control way which fits the nonlinear buildings is proposed. The idea of the proposed way is based on the model identification and structural model linearization, and exerting the control force to the built model according to the force action principle. This proposed way has a better practicability as the built model can be reduced by the balance reduction method based on the empirical Grammian matrix. A three-story benchmark structure is presented and the simulation results illustrate that the proposed method is viable for the civil engineering structures.展开更多
The analysis and design of observed-based nonlinear control of a heartbeat tracking system is investigated in this paper. Two of Zeeman’s heartbeat models are investigated and modified by adding the control input as ...The analysis and design of observed-based nonlinear control of a heartbeat tracking system is investigated in this paper. Two of Zeeman’s heartbeat models are investigated and modified by adding the control input as a pacemaker, thereby creating the control-affine nonlinear system models that capture the general heartbeat behavior of the human heart. The control objective is to force the output of the heartbeat models to track and generate a synthetic electrocardiogram (ECG) signal based on the actual patient reference data, obtained from the William Beaumont Hospitals, Michigan, and the PhysioNet database. The formulations of the proposed heartbeat tracking control systems consist of two phases: analysis and synthesis. In the analysis phase, nonlinear controls based on input-output feedback linearization are considered. This approach simplifies the difficult task of developing nonlinear controls. In the synthesis phase, observer-based controls are employed, where the unmeasured state variables are estimated for practical implementations. These observer-based nonlinear feedback control schemes may be used as a control strategy in electronic pacemakers. In addition, they could be used in a software-based approach to generate a synthetic ECG signal to assess the effectiveness of diagnostic ECG signal processing devices.展开更多
文摘Entanglement in quantum theory is a peculiar concept to scientists. With this concept we are forced to re-consider the cluster property which means that one event is irrelevant to another event when they are fully far away. In the recent works we showed that the quasi-degenerate states induce the violation of cluster property in antiferromagnets when the continuous symmetry breaks spontaneously. We expect that the violation of cluster property will be observed in other materials too, because the spontaneous symmetry breaking is found in many systems such as the high temperature superconductors and the superfluidity. In order to examine the cluster property for these materials, we studied a quantum nonlinear sigma model with U(1) symmetry in the previous work. There we showed that the model does have quasi-degenerate states. In this paper we study the quantum nonlinear sigma model with SU(2) symmetry. In our approach we first define the quantum system on the lattice and then adopt the representation where the kinetic term is diagonalized. Since we have no definition on the conjugate variable to the angle variable, we use the angular momentum operators instead for the kinetic term. In this representation we introduce the states with the fixed quantum numbers and carry out numerical calculations using quantum Monte Carlo methods and other methods. Through analytical and numerical studies, we conclude that the energy of the quasi-degenerate state is proportional to the squared total angular momentum as well as to the inverse of the lattice size.
基金Project supported by the National Natural Science Foundation of China (Nos. 12172236, 12202289,and U21A20430)the Science and Technology Research Project of Hebei Education Department of China (No. QN2022083)。
文摘In this paper, the nonlinear free vibration behaviors of the piezoelectric semiconductor(PS) doubly-curved shell resting on the Pasternak foundation are studied within the framework of the nonlinear drift-diffusion(NLDD) model and the first-order shear deformation theory. The nonlinear constitutive relations are presented, and the strain energy, kinetic energy, and virtual work of the PS doubly-curved shell are derived.Based on Hamilton's principle as well as the condition of charge continuity, the nonlinear governing equations are achieved, and then these equations are solved by means of an efficient iteration method. Several numerical examples are given to show the effect of the nonlinear drift current, elastic foundation parameters as well as geometric parameters on the nonlinear vibration frequency, and the damping characteristic of the PS doublycurved shell. The main innovations of the manuscript are that the difference between the linearized drift-diffusion(LDD) model and the NLDD model is revealed, and an effective method is proposed to select a proper initial electron concentration for the LDD model.
文摘Using the Faddeev-Jackiw (FJ) quantization method, this paper treats the CP^1nonlinear sigma model with ChernSimons term. The generalized FJ brackets are obtained in the framework of this quantization method, which agree with the results obtained by using the Dirac's method.
文摘Entanglement in quantum theory is a concept that has confused many scientists. This concept implies that the cluster property, which means no relations between sufficiently separated two events, is non-trivial. In the works for some quantum spin systems, which have been recently published by the author, extensive and quantitative examinations were made about the violation of cluster property in the correlation function of the spin operator. The previous study of these quantum antiferromagnets showed that this violation is induced by the degenerate states in the systems where the continuous symmetry spontaneously breaks. Since this breaking is found in many materials such as the high temperature superconductors and the superfluidity, it is an important question whether we can observe the violation of the cluster property in them. As a step to answer this question we study a quantum nonlinear sigma model with U(1) symmetry in this paper. It is well known that this model, which has been derived as an effective model of the quantum spin systems, can also be applied to investigations of many materials. Notifying that the existence of the degenerate states is essential for the violation, we made numerical calculations in addition to theoretical arguments to find these states in the nonlinear sigma model. Then, successfully finding the degenerate states in the model, we came to a conclusion that there is a chance to observe the violation of cluster property in many materials to which the nonlinear sigma model applies.
文摘The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local approximation.The LQR is an excellent method for developing a controller for nonlinear systems.It provides optimal feedback to make the closed-loop system robust and stable,rejecting external disturbances.Model-based optimal controller for a nonlinear system such as a rotatory inverted pendulum has not been designed and implemented using Newton-Euler,Lagrange method,and local approximation.Therefore,implementing LQR to an underactuated nonlinear system was vital to design a stable controller.A mathematical model has been developed for the controller design by utilizing the Newton-Euler,Lagrange method.The nonlinear model has been linearized around an equilibrium point.Linear and nonlinear models have been compared to find the range in which linear and nonlinear models’behaviour is similar.MATLAB LQR function and system dynamics have been used to estimate the controller parameters.For the performance evaluation of the designed controller,Simulink has been used.Linear and nonlinear models have been simulated along with the designed controller.Simulations have been performed for the designed controller over the linear and nonlinear system under different conditions through varying system variables.The results show that the system is stable and robust enough to act against external disturbances.The controller maintains the rotary inverted pendulum in an upright position and rejects disruptions like falling under gravitational force or any external disturbance by adjusting the rotation of the horizontal link in both linear and nonlinear environments in a specific range.The controller has been practically designed and implemented.It is vivid from the results that the controller is robust enough to reject the disturbances in milliseconds and keeps the pendulum arm deflection angle to zero degrees.
文摘The impact of nonlinear stability and instability on the validity of tangent linear model (TLM) is investigated by comparing its results with those produced by the nonlinear model (NLM) with the identical initial perturbations. The evolutions of different initial perturbations superposed on the nonlinearly stable and unstable basic flows are examined using the two-dimensional quasi-geostrophic models of double periodic-boundary condition and rigid boundary condition. The results indicate that the valid time period of TLM, during which TLM can be utilized to approximate NLM with given accuracy, varies with the magnitudes of the perturbations and the nonlinear stability and instability of the basic flows. The larger the magnitude of the perturbation is, the shorter the valid time period. The more nonlinearly unstable the basic flow is, the shorter the valid time period of TLM. With the double—periodic condition the valid period of the TLM is shorter than that with the rigid—boundary condition. Key words Nonlinear stability and instability - Tangent linear model (TLM) - Validity This work was supported by the National Key Basic Research Project “Research on the Formation Mechanism and Prediction Theory of Severe Synoptic Disasters in China” (No.G1998040910) and the National Natural Science Foundation of China (No.49775262 and No.49823002).
基金supported by the National Natural Science Foundation of China (No.60975023)
文摘In order to design a nonlinear controller for small-scale autonomous helicopters, the dynamic characteristics of a model helicopter are investigated, and an integrated nonlinear model of a small-scale helicopter for hovering control is presented. It is proved that the nonlinear system of the small-scale helicopter can be transformed to a linear system using the dynamic feedback linearization technique. Finally, simulations are carried out to validate the nonlinear controller.
基金Project(61074074)supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401)supported by the Group Innovation Fund,China
文摘An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.
基金Project(61074074) supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401) supported by the Group Innovative Fund,China
文摘Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach.
文摘In order to design linear controller for nonlinear systems,a simple but efficient method of modeling a nonlinear system was proposed by means of multiple linearized models at different operating points in the entire range of the expected changes of the operating points.The original nonlinear system was described by linear combination of these multiple linearized models,with the linear combination parameters being identified on line based on least squares method.Model Predictive Control,an optimization based technique,was used to design the linear controller.A sufficient condition for ensuring the existence of a linear controller for the original nonlinear system was also given.Good performance indicated by two simulated examples confirms the usefulness of the proposed method.
基金Under the auspices of National Natural Science Foundation of China (No. 50809004)
文摘Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.
文摘A nonlinear modeling framework is presented for an oceanographic unmanned aerial vehicle (UAV) by using symbolic modeling and linear fractional transformation (LFT) techniques . Consequently, an exact nonlinear symbolic LFT model of the UAV is derived in a standard M-A form where M represents the nominal, known, part of the system and A contains the time-varying, uncertain and nonlinear components. The advantages of the proposed modeling approach are that: it not only provides an ideal starting point to obtain various final design-oriented models through subse- quent assumptions and simplifications, but also it facilitates the control system analysis with models of different levels of fidelity/complexity. Furthermore, a linearized symbolic LFT model of the UAV is proposed based on the LFT differentiation, which is amenable directly to a sophisticated linear ro- bust control strategy such as μ synthesis/analysis. Both of the derived LFT models are validated with the original nonlinear model in time domain. Simulation results show the effectiveness of the pro- posed algorithm.
基金Project supported by the National Natural Science Foundation of China (No. 60504024), and Zhejiang Provincial Education Depart-ment (No. 20050905), China
文摘A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap- proach employs a neural network, whose activation functions satisfy the sector conditions, to approximate the nonlinear system. To improve the approximation performance and to account for the parameter perturbations during operation, a novel neural network model termed standard neural network model (SNNM) is proposed. If the uncertainty is bounded, the SNNM is called an interval SNNM (ISNNM). A state-feedback control law is designed for the nonlinear system modelled by an ISNNM such that the closed-loop system is globally, robustly, and asymptotically stable. The control design equations are shown to be a set of linear matrix inequalities (LMIs) that can be easily solved by available convex optimization algorithms. An example is given to illustrate the control design procedure, and the performance of the proposed approach is compared with that of a related method reported in literature.
基金the National Natural Science Foundation of China (No. 60504024)the Specialized Research Fund for the Doc-toral Program of Higher Education, China (No. 20060335022)+1 种基金the Natural Science Foundation of Zhejiang Province, China (No. Y106010)the "151 Talent Project" of Zhejiang Province (Nos. 05-3-1013 and 06-2-034), China
文摘A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constraints are shown to be a set of linear matrix inequalities (LMIs), which can be easily solved by the MATLAB LMI Control Toolbox to determine the control law. Most recurrent neural networks (including the chaotic neural network) and nonlinear systems modeled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be stabilization controllers synthesized in the framework of a unified SNNM. Finally, three numerical examples are provided to illustrate the design developed in this paper.
文摘We compare the static nucleon properties in the Chiral Perturbation Theory (χPT) and the Linear Sigma Model (LSM). We consider a chiral model for the nucleon which is based on the linear sigma model with scalar-isoscalar and scalarisovector mesons coupled to quarks. We have solved the field equations in the mean field approximation for the hedgehog baryon state with different sets of model parameters. A good investigation of some static nucleon properties is obtained by the LSM.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61803224)the Natural Science Foundation of Shandong Province(Grant No.ZR2019QF005).
文摘For a type of high⁃order discrete⁃time nonlinear systems(HDNS)whose system models are undefined,a model⁃free predictive control(MFPC)algorithm is proposed in this paper.At first,an estimation model is given by the improved projection algorithm to approach the controlled nonlinear system.Then,on the basis of the estimation model,a predictive controller is designed by solving the finite time domain rolling optimization quadratic function,and the controller’s explicit analytic solution is also obtained.Furthermore,the closed⁃loop system's stability can be ensured.Finally,the results of simulation reveal that the presented control strategy has a faster convergence speed as well as more stable dynamic property compared with the model⁃free sliding mode control(MFSC).
基金supported by National Natural Science Foundation of China (No. 60574014, No. 60425310)Doctor Subject Foundation of China (No. 200805330004)+2 种基金Program for New Century Excellent Talents in University (No. NCET-06-0679)Natural Science Foundation of Hunan Province of China (No. 08JJ1010)Science Foundation of Education Department of Hunan Province (No. 08C106)
文摘This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.
基金supported by the Key Project of National Natural Science Foundation of China(61933013)Ningbo 13th Five-year Marine Economic Innovation and Development Demonstration Project(NBH Y-2017-Z1)。
文摘This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fault diagnosis problem through extracting nonlinear features. When the on-line fault diagnosis task is in progress, a locally linear model is firstly built at the current fault sample. According to the basic idea of reconstruction based contribution(RBC), the propagation of fault information is described by using back-propagation(BP) algorithm. Then, a contribution index is established to measure the correlation between the variable and the fault, and the final diagnosis result is obtained by searching variables with large contributions. The smearing effect, which is an important factor affecting the performance of fault diagnosis, can be suppressed as well,and the theoretical analysis reveals that the correct diagnosis can be guaranteed by LLBBC. Finally, the feasibility and effectiveness of the proposed method are verified through a nonlinear numerical example and the Tennessee Eastman benchmark process.
基金Project supported by the Natural Science Foundation of Jiangsu Province of China (No.BK2003083)the Second Batch of "Six Talent Peak" of Jiangsu Province
文摘The present nonlinear model reduction methods unfit the nonlinear benchmark buildings as their vibration equations belong to a non-affine system. Meanwhile, the controllers designed directly by the nonlinear control strategy have a high order, and they are difficult to be applied actually. Therefore, a new active vibration control way which fits the nonlinear buildings is proposed. The idea of the proposed way is based on the model identification and structural model linearization, and exerting the control force to the built model according to the force action principle. This proposed way has a better practicability as the built model can be reduced by the balance reduction method based on the empirical Grammian matrix. A three-story benchmark structure is presented and the simulation results illustrate that the proposed method is viable for the civil engineering structures.
文摘The analysis and design of observed-based nonlinear control of a heartbeat tracking system is investigated in this paper. Two of Zeeman’s heartbeat models are investigated and modified by adding the control input as a pacemaker, thereby creating the control-affine nonlinear system models that capture the general heartbeat behavior of the human heart. The control objective is to force the output of the heartbeat models to track and generate a synthetic electrocardiogram (ECG) signal based on the actual patient reference data, obtained from the William Beaumont Hospitals, Michigan, and the PhysioNet database. The formulations of the proposed heartbeat tracking control systems consist of two phases: analysis and synthesis. In the analysis phase, nonlinear controls based on input-output feedback linearization are considered. This approach simplifies the difficult task of developing nonlinear controls. In the synthesis phase, observer-based controls are employed, where the unmeasured state variables are estimated for practical implementations. These observer-based nonlinear feedback control schemes may be used as a control strategy in electronic pacemakers. In addition, they could be used in a software-based approach to generate a synthetic ECG signal to assess the effectiveness of diagnostic ECG signal processing devices.