After a theoretical model is put forward on the base of accurate description of the Raman gain profile and the physical quantity, maximum Raman crosstalk(MRC), which quantificationally depicts the intensity of Raman c...After a theoretical model is put forward on the base of accurate description of the Raman gain profile and the physical quantity, maximum Raman crosstalk(MRC), which quantificationally depicts the intensity of Raman crosstalk is defined. The influences of launch power, fiber effective core area, fiber nonlinear index, fiber length, channel number and channel interval on MRC are deduced. The result indicates that compared with low speed and narrowband optical fiber communication system, serious Raman crosstalk lies in high speed and broadband system, which impacts the performance of the system badly. The result is useful for forecasting Raman crosstalk in broadband and high speed optical fiber communication system.展开更多
The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy...The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.展开更多
Based on the designed As2Se3 and As2S3 chalcogenide glass photonic crystal fiber(PCF) and the scalar nonlinear Schrdinger equation,the effects of pump power and wavelength on modulation instability(MI) gain are co...Based on the designed As2Se3 and As2S3 chalcogenide glass photonic crystal fiber(PCF) and the scalar nonlinear Schrdinger equation,the effects of pump power and wavelength on modulation instability(MI) gain are comprehensively studied in the abnormal dispersion regime of chalcogenide glass PCF.Owing to high Raman effect and high nonlinearity,ultra-broadband MI gain is obtained in chalcogenide glass PCF.By choosing the appropriate pump parameter,the MI gain bandwidth reaches 2738 nm for the As2Se3 glass PCF in the abnormal-dispersion region,while it is 1961 nm for the As2S3 glass PCF.展开更多
基金Supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institute of MOE, P.R.C.
文摘After a theoretical model is put forward on the base of accurate description of the Raman gain profile and the physical quantity, maximum Raman crosstalk(MRC), which quantificationally depicts the intensity of Raman crosstalk is defined. The influences of launch power, fiber effective core area, fiber nonlinear index, fiber length, channel number and channel interval on MRC are deduced. The result indicates that compared with low speed and narrowband optical fiber communication system, serious Raman crosstalk lies in high speed and broadband system, which impacts the performance of the system badly. The result is useful for forecasting Raman crosstalk in broadband and high speed optical fiber communication system.
基金the Natural Science Foundation of Guangdong Province of China (Grant No. 05005926)the Plan Project of Science and Technology of Guangzhou City (Grant No. 2007J1-C0011)Open Foundation of the Key Laboratory of Laser Life Science,Ministry of Education of China(2007-05)
文摘The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.
基金Project supported by the National Natural Science Fundation of China(Grant No.11404286)the Natural Science Fundation of Zhejiang Province,China(Grant No.LY15F050010)the Scientific Research Foundation of Zhejiang University of Technology,China(Grant No.1401109012408)
文摘Based on the designed As2Se3 and As2S3 chalcogenide glass photonic crystal fiber(PCF) and the scalar nonlinear Schrdinger equation,the effects of pump power and wavelength on modulation instability(MI) gain are comprehensively studied in the abnormal dispersion regime of chalcogenide glass PCF.Owing to high Raman effect and high nonlinearity,ultra-broadband MI gain is obtained in chalcogenide glass PCF.By choosing the appropriate pump parameter,the MI gain bandwidth reaches 2738 nm for the As2Se3 glass PCF in the abnormal-dispersion region,while it is 1961 nm for the As2S3 glass PCF.