期刊文献+
共找到304篇文章
< 1 2 16 >
每页显示 20 50 100
The Successive Approximation Broyden-like Algorithm for Nonlinear Complementarity Problems 被引量:1
1
作者 MAChang-feng LIANGGuo-ping 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第2期146-153,共8页
In this paper, we present a new form of successive approximation Broyden-like algorithm for nonlinear complementarity problem based on its equivalent nonsmooth equations. Under suitable conditions, we get the global c... In this paper, we present a new form of successive approximation Broyden-like algorithm for nonlinear complementarity problem based on its equivalent nonsmooth equations. Under suitable conditions, we get the global convergence on the algorithms. Some numerical results are also reported. 展开更多
关键词 nonlinear complementarity problem successive approximation Broyden-like algorithm global convergence
下载PDF
Integrating Variable Reduction Strategy With Evolutionary Algorithms for Solving Nonlinear Equations Systems 被引量:1
2
作者 Aijuan Song Guohua Wu +1 位作者 Witold Pedrycz Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期75-89,共15页
Nonlinear equations systems(NESs)are widely used in real-world problems and they are difficult to solve due to their nonlinearity and multiple roots.Evolutionary algorithms(EAs)are one of the methods for solving NESs,... Nonlinear equations systems(NESs)are widely used in real-world problems and they are difficult to solve due to their nonlinearity and multiple roots.Evolutionary algorithms(EAs)are one of the methods for solving NESs,given their global search capabilities and ability to locate multiple roots of a NES simultaneously within one run.Currently,the majority of research on using EAs to solve NESs focuses on transformation techniques and improving the performance of the used EAs.By contrast,problem domain knowledge of NESs is investigated in this study,where we propose the incorporation of a variable reduction strategy(VRS)into EAs to solve NESs.The VRS makes full use of the systems of expressing a NES and uses some variables(i.e.,core variable)to represent other variables(i.e.,reduced variables)through variable relationships that exist in the equation systems.It enables the reduction of partial variables and equations and shrinks the decision space,thereby reducing the complexity of the problem and improving the search efficiency of the EAs.To test the effectiveness of VRS in dealing with NESs,this paper mainly integrates the VRS into two existing state-of-the-art EA methods(i.e.,MONES and DR-JADE)according to the integration framework of the VRS and EA,respectively.Experimental results show that,with the assistance of the VRS,the EA methods can produce better results than the original methods and other compared methods.Furthermore,extensive experiments regarding the influence of different reduction schemes and EAs substantiate that a better EA for solving a NES with more reduced variables tends to provide better performance. 展开更多
关键词 Evolutionary algorithm(EA) nonlinear equations systems(ENSs) problem domain knowledge variable reduction strategy(VRS)
下载PDF
Manifold Structure Analysis of Tactical Network Traffic Matrix Based on Maximum Variance Unfolding Algorithm
3
作者 Hao Shi Guofeng Wang +2 位作者 Rouxi Wang Jinshan Yang Kaishuan Shang 《Journal of Electronic Research and Application》 2023年第6期42-49,共8页
As modern weapons and equipment undergo increasing levels of informatization,intelligence,and networking,the topology and traffic characteristics of battlefield data networks built with tactical data links are becomin... As modern weapons and equipment undergo increasing levels of informatization,intelligence,and networking,the topology and traffic characteristics of battlefield data networks built with tactical data links are becoming progressively complex.In this paper,we employ a traffic matrix to model the tactical data link network.We propose a method that utilizes the Maximum Variance Unfolding(MVU)algorithm to conduct nonlinear dimensionality reduction analysis on high-dimensional open network traffic matrix datasets.This approach introduces novel ideas and methods for future applications,including traffic prediction and anomaly analysis in real battlefield network environments. 展开更多
关键词 Manifold learning Maximum Variance Unfolding(MVU)algorithm Nonlinear dimensionality reduction
下载PDF
A Bi-population Cooperative Optimization Algorithm Assisted by an Autoencoder for Medium-scale Expensive Problems 被引量:2
4
作者 Meiji Cui Li Li +3 位作者 MengChu Zhou Jiankai Li Abdullah Abusorrah Khaled Sedraoui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第11期1952-1966,共15页
This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informat... This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informative lowdimensional space by using an autoencoder as a dimension reduction tool.The search operation conducted in this low space facilitates the population with fast convergence towards the optima.To strike the balance between exploration and exploitation during optimization,two phases of a tailored teaching-learning-based optimization(TTLBO)are adopted to coevolve solutions in a distributed fashion,wherein one is assisted by an autoencoder and the other undergoes a regular evolutionary process.Also,a dynamic size adjustment scheme according to problem dimension and evolutionary progress is proposed to promote information exchange between these two phases and accelerate evolutionary convergence speed.The proposed algorithm is validated by testing benchmark functions with dimensions varying from 50 to 200.As indicated in our experiments,TTLBO is suitable for dealing with medium-scale problems and thus incorporated into the AEO framework as a base optimizer.Compared with the state-of-the-art algorithms for MEPs,AEO shows extraordinarily high efficiency for these challenging problems,t hus opening new directions for various evolutionary algorithms under AEO to tackle MEPs and greatly advancing the field of medium-scale computationally expensive optimization. 展开更多
关键词 Autoencoder dimension reduction evolutionary algorithm medium-scale expensive problems teaching-learning-based optimization
下载PDF
Model reduction using the genetic algorithmand routh approxi mations
5
作者 李红星 芦金石 闫红书 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期632-639,共8页
A new method of model reduction combining the genetic algorithm(GA) with the Routh approximation method is presented. It is suggested that a high-order system can be approximated by a low-order model with a time del... A new method of model reduction combining the genetic algorithm(GA) with the Routh approximation method is presented. It is suggested that a high-order system can be approximated by a low-order model with a time delay. The denominator parameters of the reduced-order model are determined by the Routh approximation method, then the numerator parameters and time delay are identified by the GAL. The reduced-order models obtained by the proposed method will always be stable if the original system is stable and produce a good approximation to the original system in both the frequency domain and time domain. Two numerical examples show that the method is cornputationally simple and efficient. 展开更多
关键词 model reduction time delay genetic algorithm Routh approximation.
下载PDF
Implementation of Manifold Learning Algorithm Isometric Mapping
6
作者 Huan Yang Haiming Li 《Journal of Computer and Communications》 2019年第12期11-19,共9页
In dealing with high-dimensional data, such as the global climate model, facial data analysis, human gene distribution and so on, the problem of dimensionality reduction is often encountered, that is, to find the low ... In dealing with high-dimensional data, such as the global climate model, facial data analysis, human gene distribution and so on, the problem of dimensionality reduction is often encountered, that is, to find the low dimensional structure hidden in high-dimensional data. Nonlinear dimensionality reduction facilitates the discovery of the intrinsic structure and relevance of the data and can make the high-dimensional data visible in the low dimension. The isometric mapping algorithm (Isomap) is an important algorithm for nonlinear dimensionality reduction, which originates from the traditional dimensionality reduction algorithm MDS. The MDS algorithm is based on maintaining the distance between the samples in the original space and the distance between the samples in the lower dimensional space;the distance used here is Euclidean distance, and the Isomap algorithm discards the Euclidean distance, and calculates the shortest path between samples by Floyd algorithm to approximate the geodesic distance along the manifold surface. Compared with the previous nonlinear dimensionality reduction algorithm, the Isomap algorithm can effectively compute a global optimal solution, and it can ensure that the data manifold converges to the real structure asymptotically. 展开更多
关键词 MANIFOLD NONLINEAR Dimensionality REDUCTION ISOMAP ALGORITHM MDS ALGORITHM
下载PDF
A fast MPC algorithm for reducing computation burden of MIMO
7
作者 祁荣宾 梅华 +1 位作者 陈超 钱锋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2087-2091,共5页
The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is ... The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is proposed in this paper to solve this problem, in which real-time values are modulated to bit streams to simplify the multiplication. In addition, manipulated variables in the prediction horizon are deduced to the current control horizon approximately by a recursive relation to decrease the dimension of QR optimization. The simulation results demonstrate the feasibility of this fast algorithm for MIMO systems. 展开更多
关键词 Fast MPC algorithm Computation burden One-bit operation Dimension reduction
下载PDF
基于优化极限学习机模型的边坡稳定性预测研究
8
作者 陈家豪 张燕 +3 位作者 杜明芳 黄海荣 徐志军 陈旭 《金属矿山》 CAS 北大核心 2024年第6期191-198,共8页
边坡稳定性预测对工程安全及地质灾害防治极其重要,目前机器学习在边坡稳定性预测较广泛,例如BP神经网络、支持向量机(SVM)、极限学习机(ELM)等。但传统的ELM模型在预测边坡稳定性时存在易陷入局部最小值、难以选择合适学习率的问题,针... 边坡稳定性预测对工程安全及地质灾害防治极其重要,目前机器学习在边坡稳定性预测较广泛,例如BP神经网络、支持向量机(SVM)、极限学习机(ELM)等。但传统的ELM模型在预测边坡稳定性时存在易陷入局部最小值、难以选择合适学习率的问题,针对此问题,提出了一种基于主成分分析法(PCA)和爬行动物搜索法(RSA)并行优化极限学习机(ELM)的边坡稳定性预测模型。此模型利用PCA算法对数据进行降维,减少数据的冗余性,并利用RSA算法优化ELM模型的输入层权值和隐含层偏置,极大地提高了模型的预测精度和预测效率。将传统的ELM模型、RSA-ELM模型、PCA-SVM模型及PCA-RSA-ELM 4种模型进行对比,从而得到PCA-RSA-ELM模型在边坡稳定性预测这类问题上的精确性更高,为边坡稳定性预测分析提供新的思路,对防灾减灾及保护国民经济安全具有重大意义。 展开更多
关键词 安全工程 边坡稳定性 极限学习机 PCA 降维 爬行动物搜索 混淆矩阵
下载PDF
基于模式识别技术的光电探测器故障辨识研究
9
作者 祝加雄 戴敏 《激光杂志》 CAS 北大核心 2024年第2期214-218,共5页
当前光电探测器故障辨识错误率高,为提升光电探测器故障辨识效果,设计了基于模式识别技术的光电探测器故障辨识方法。首先采集光电探测器状态信号,并从光电探测器状态信号中提取特征,然后利用主成分分析算法对特征进行降维处理,得到最... 当前光电探测器故障辨识错误率高,为提升光电探测器故障辨识效果,设计了基于模式识别技术的光电探测器故障辨识方法。首先采集光电探测器状态信号,并从光电探测器状态信号中提取特征,然后利用主成分分析算法对特征进行降维处理,得到最优光电探测器状态辨识特征,最后将光电探测器状态特征作为支持向量机的输入,光电探测器状态作为支持向量机输出,通过支持向量机学习设计光电探测器状态辨识器,实验结果表明,本方法可以有效辨识光电探测器辨识故障,光电探测器故障辨识正确率超过了90%,光电探测器故障辨识时间控制在20 ms以内,为光电探测器状态分析提供了理论依据。 展开更多
关键词 光电探测器 故障辨识 降维处理 辨识时间 主成分分析算法
下载PDF
基于KPCA特征量降维的风电并网系统暂态电压稳定性评估
10
作者 张晓英 史冬雪 +1 位作者 张琎 张鑫 《兰州理工大学学报》 CAS 北大核心 2024年第2期96-103,共8页
针对电力系统暂态电压稳定性评估中所需特征量数据庞大,影响模型训练时间,降低计算效率等问题,提出了一种基于核主成分分析方法KPCA和CPSO-BP组合的风电并网系统暂态电压稳定性评估方法.首先根据输入特征采集原始特征集,采用核主成分分... 针对电力系统暂态电压稳定性评估中所需特征量数据庞大,影响模型训练时间,降低计算效率等问题,提出了一种基于核主成分分析方法KPCA和CPSO-BP组合的风电并网系统暂态电压稳定性评估方法.首先根据输入特征采集原始特征集,采用核主成分分析算法对特征量进行非线性数据处理,提取出最优的特征集.然后将降维后的特征集作为CPSO-BP神经网络输入量进行监督学习,将得到的模型按照临界故障切除时间裕度值的大小进行分类,将分类后的样本进行风电并网系统的暂态电压稳定性评估和临界故障切除时间裕度值预测.仿真分析结果表明,对输入特征进行降维,保留重要输入特征量,剔除冗余特征量,不仅简化了模型,还提高了网络评估的准确性和计算效率. 展开更多
关键词 风电并网 核主成分分析算法 降维 CPSO-BP神经网络 暂态电压稳定性评估
下载PDF
基于ELDA降维与MPA-SVM的滚动轴承故障诊断方法
11
作者 刘运航 宋宇博 朱大鹏 《噪声与振动控制》 CSCD 北大核心 2024年第3期117-124,共8页
为了提高滚动轴承故障诊断精度,提出一种基于偏心线性判别分析(Eccentric Linear Discriminant Analysis,ELDA)降维算法与经海洋捕食者算法(Marine Predators Algorithm,MPA)优化的支持向量机(Support Vector Machine,SVM)相结合的滚动... 为了提高滚动轴承故障诊断精度,提出一种基于偏心线性判别分析(Eccentric Linear Discriminant Analysis,ELDA)降维算法与经海洋捕食者算法(Marine Predators Algorithm,MPA)优化的支持向量机(Support Vector Machine,SVM)相结合的滚动轴承故障诊断方法。首先对轴承信号应用时域和频域分析方法构建高维特征集,其次应用自适应最大似然估计方法(Adaptive Maximum Likelihood Estimation,AMLE)进行固有维度估计,利用ELDA算法进行二次特征提取,充分挖掘敏感特征,降低冗余特征对故障诊断的影响;最后将低维敏感可分矩阵输入到MPA-SVM分类器中识别故障类型。实验分析表明,所提方法能有效缩短训练时长并提高诊断准确率。 展开更多
关键词 故障诊断 滚动轴承 特征降维 海洋捕食者算法 支持向量机
下载PDF
Multi-surrogate framework with an adaptive selection mechanism for production optimization
12
作者 Jia-Lin Wang Li-Ming Zhang +10 位作者 Kai Zhang Jian Wang Jian-Ping Zhou Wen-Feng Peng Fa-Liang Yin Chao Zhong Xia Yan Pi-Yang Liu Hua-Qing Zhang Yong-Fei Yang Hai Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期366-383,共18页
Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing researc... Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing research suggests that the effectiveness of a surrogate model can vary depending on the complexity of the design problem.A surrogate model that has demonstrated success in one scenario may not perform as well in others.In the absence of prior knowledge,finding a promising surrogate model that performs well for an unknown reservoir is challenging.Moreover,the optimization process often relies on a single evolutionary algorithm,which can yield varying results across different cases.To address these limitations,this paper introduces a novel approach called the multi-surrogate framework with an adaptive selection mechanism(MSFASM)to tackle production optimization problems.MSFASM consists of two stages.In the first stage,a reduced-dimensional broad learning system(BLS)is used to adaptively select the evolutionary algorithm with the best performance during the current optimization period.In the second stage,the multi-objective algorithm,non-dominated sorting genetic algorithm II(NSGA-II),is used as an optimizer to find a set of Pareto solutions with good performance on multiple surrogate models.A novel optimal point criterion is utilized in this stage to select the Pareto solutions,thereby obtaining the desired development schemes without increasing the computational load of the numerical simulator.The two stages are combined using sequential transfer learning.From the two most important perspectives of an evolutionary algorithm and a surrogate model,the proposed method improves adaptability to optimization problems of various reservoir types.To verify the effectiveness of the proposed method,four 100-dimensional benchmark functions and two reservoir models are tested,and the results are compared with those obtained by six other surrogate-model-based methods.The results demonstrate that our approach can obtain the maximum net present value(NPV)of the target production optimization problems. 展开更多
关键词 Production optimization Multi-surrogate models Multi-evolutionary algorithms Dimension reduction Broad learning system
下载PDF
融合模型求解与深度学习的可见光通信非线性均衡器
13
作者 田大明 苗圃 《兵工学报》 EI CAS CSCD 北大核心 2024年第2期466-473,共8页
沃尔特拉非线性后均衡器(Volterra Series Nonlinear Post-Equalizer,VS-NPE)可以补偿可见光通信(Visible Light Communication,VLC)的非线性失真和多径效应,但其结构复杂且均衡精度有限。在VS-NPE内核求解基础上,提出一种基于阈值自学... 沃尔特拉非线性后均衡器(Volterra Series Nonlinear Post-Equalizer,VS-NPE)可以补偿可见光通信(Visible Light Communication,VLC)的非线性失真和多径效应,但其结构复杂且均衡精度有限。在VS-NPE内核求解基础上,提出一种基于阈值自学习近似消息传递(Learned Threshold Approximate Message Passing,LTAMP)网络的非线性均衡器。修正样本观测矩阵以克服其列高度相关的缺陷;在改进近似消息传递(Approximate Message Passing,AMP)算法迭代的基础上,将算法每一次迭代的计算过程映射为一层特殊的神经网络,经逐层展开后构建出完整的LTAMP均衡器。所提方法融合了模型求解和深度学习的优势,可从样本中学习最佳的AMP参数,以克服其对噪声敏感且输出不稳定的缺陷,进而提升内核求解稳定性与计算精度。仿真结果表明,与稳固阈值AMP算法相比,所提方法在误码率为1×10^(-3)时能取得2 dB的信噪比增益,且对样本噪声具有较强的自适应性,展现出优异的非线性失真补偿能力。 展开更多
关键词 沃尔特拉非线性后均衡器 可见光通信 近似消息传递算法 深度学习
下载PDF
基于KPCA降维分析的特高拱坝监测模型
14
作者 王子轩 陈德辉 +2 位作者 欧斌 杨石勇 傅蜀燕 《人民长江》 北大核心 2024年第10期246-254,共9页
为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型。首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GR... 为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型。首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GRU参数进行优化,进而构建出最优变形预测模型。以小湾特高拱坝变形数据为例,将KPCA-GSWOA-GRU模型与KPCA-WOA-GRU模型、PCA-GSWOA-GRU模型以及传统模型进行预测拟合对比。结果表明:KPCA-GSWOA-GRU模型有效降低了多重共线性问题,且在均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R^(2))等方面均优于对比模型。 展开更多
关键词 特高拱坝 变形监测 降维分析 核主成分分析(KPCA) 全局搜索策略的鲸鱼优化算法(GSWOA) 门控循环单元(GRU) 小湾水电站
下载PDF
基于哈希算法的互联网平台数据中台资源检索方法
15
作者 梁艳春 阮宜龙 +1 位作者 李晨阳 张宏俊 《现代传输》 2024年第2期37-40,共4页
由于检索请求数据自身具有高维特征,导致检索输出的查准率和查全率偏低,为此,本文提出基于哈希算法的互联网平台数据中台资源检索方法。以信息跨域检索为导向,借助哈希算法实现对输入互联网平台数据中台资源检索请求的降维处理,在对输... 由于检索请求数据自身具有高维特征,导致检索输出的查准率和查全率偏低,为此,本文提出基于哈希算法的互联网平台数据中台资源检索方法。以信息跨域检索为导向,借助哈希算法实现对输入互联网平台数据中台资源检索请求的降维处理,在对输入数据进行清洗、去重、分词等预处理操作的基础上,使用词袋模型的方法,将文本转化为向量,再借助主成分分析法实现对向量的降维。在检索阶段,将与检索请求相似度最高(欧氏距离最小的)资源作为最终的检索输出结果。在测试结果中,资源检索方法面对不同类型的资源检索请求,对应的查准率稳定在91.0%以上,查全率稳定在90.0%以上。 展开更多
关键词 哈希算法 互联网平台 数据中台 资源检索 信息跨域检索 降维处理 词袋模型 主成分分析法 欧氏距离
下载PDF
One Approach to Construction of Bilateral Approximations Methods for Solution of Nonlinear Eigenvalue Problems
16
作者 Bohdan Mykhajlovych Podlevskyi 《American Journal of Computational Mathematics》 2012年第2期118-124,共7页
In this paper a new approach to construction of iterative methods of bilateral approximations of eigenvalue is proposed and investigated. The conditions on initial approximation, which ensure the convergence of iterat... In this paper a new approach to construction of iterative methods of bilateral approximations of eigenvalue is proposed and investigated. The conditions on initial approximation, which ensure the convergence of iterative processes, are obtained. 展开更多
关键词 Nonlinear EIGENVALUE Problem DERIVATIVES of Matrix DETERMINANT Numerical Algorithm of ALTERNATE APPROXIMATIONS
下载PDF
基于填充式ECT传感器的图像重建 被引量:1
17
作者 颜华 梁丽卓 王艳 《沈阳工业大学学报》 CAS 北大核心 2023年第5期552-558,共7页
为提高电容层析成像(ECT)系统对于非规则截面管道的成像质量,提出了一种基于填充式ECT传感器的图像重建方法.建立了完整的填充式ECT传感器模型,计算了考虑管壁和填充材料存在的灵敏度分布,针对重建区域标定了空场和满场.利用已知的填充... 为提高电容层析成像(ECT)系统对于非规则截面管道的成像质量,提出了一种基于填充式ECT传感器的图像重建方法.建立了完整的填充式ECT传感器模型,计算了考虑管壁和填充材料存在的灵敏度分布,针对重建区域标定了空场和满场.利用已知的填充区的介电常数以及对灵敏度矩阵的拆分处理,建立了降维的ECT正问题模型.利用Landweber迭代法求解了相应的逆问题.对所提方法进行了仿真数据验证和实测数据验证.重建结果表明:填充材料的介电常数与重建区的低介电常数一致时所提方法可显著改善重建质量. 展开更多
关键词 电容层析成像 图像重建 非规则管道 降维 矩阵拆分 空满场标定 有限元分析 Landweber算法
下载PDF
基于ICEEMDAN和IMWPE-LDA-BOA-SVM的齿轮箱损伤识别模型 被引量:2
18
作者 王洪 张锐丽 吴凯 《机电工程》 CAS 北大核心 2023年第11期1709-1717,共9页
针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支... 针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支持向量机(SVM)的齿轮箱故障诊断方法(ICEEMDAN-IMWPE-LDA-BOA-SVM)。首先,采用ICEEMDAN对齿轮箱振动信号进行了分解,生成了一系列从低频到高频分布的本征模态函数分量;接着,基于相关系数筛选出包含主要故障信息的本征模态函数分量,进行了信号重构,降低了信号的噪声;随后,提出了改进多尺度加权排列熵的非线性动力学指标,并利用其提取了重构信号的故障特征,以构建反映齿轮箱故障特性的故障特征;然后,利用线性判别分析(LDA)对原始故障特征进行了压缩,以构建低维的故障特征向量;最后,采用蝴蝶优化算法(BOA)对支持向量机(SVM)的惩罚系数和核函数参数进行了优化,以构建参数最优的故障分类器,对齿轮箱的故障进行了识别;基于齿轮箱复合故障数据集对ICEEMDAN-IMWPE-BOA-SVM方法进行了实验和对比分析。研究结果表明:该方法能够较为准确地识别齿轮箱的不同故障类型,准确率达到了99.33%,诊断时间只需5.31 s,在多个方面都优于其他对比方法,在齿轮箱的故障诊断中更具有应用潜力。 展开更多
关键词 故障特征提取 信号分解及信号重构 特征降维 改进自适应噪声完备集成经验模态分解 改进多尺度加权排列熵 线性判别分析 蝴蝶优化算法 支持向量机
下载PDF
自适应时空正则化的相关滤波目标跟踪 被引量:1
19
作者 姜文涛 孟庆姣 《智能系统学报》 CSCD 北大核心 2023年第4期754-763,共10页
针对正则化滤波器预先定义正则化项,但无法实时抑制非目标区域学习的缺点,提出了一种自适应时空正则化的新方法,从而提高算法在目标跟踪过程中适应外观变化的鲁棒性。首先在目标函数中引入空间局部响应变化量,使滤波器专注于学习对象中... 针对正则化滤波器预先定义正则化项,但无法实时抑制非目标区域学习的缺点,提出了一种自适应时空正则化的新方法,从而提高算法在目标跟踪过程中适应外观变化的鲁棒性。首先在目标函数中引入空间局部响应变化量,使滤波器专注于学习对象中值得信任的部分,从而得到响应模型;其次根据全局响应变化决定滤波器的更新率;最后引入卷积神经网络进行深度特征提取,为减少高维数据存储过大,采用主成分分析算法进行降维处理,既保留主要特征又加快计算速度。在数据集OTB2013和OTB2015上的平均精确率和平均成功率相较于时空正则化相关滤波器算法分别提高了4.7%和12.7%。大量实验证明,该算法在复杂背景、物体遮挡、快速运动等多种场景下基本满足实时性需求。 展开更多
关键词 时空自适应 局部响应 全局响应 神经网络 卷积神经网络 特征提取 降维 主成分分析算法
下载PDF
基于谱聚类算法的高速网络数据流快速分类方法研究 被引量:1
20
作者 张震 胡贵恒 +1 位作者 盖昊宇 任远林 《齐齐哈尔大学学报(自然科学版)》 2023年第5期24-30,共7页
当前高速网络数据流分类处理时,忽略了冗余数据对分类结果的影响,使得分类结果 F1值较低。因此,提出了基于谱聚类算法的高速网络数据流快速分类方法。采用主成分分析法对高速网络数据流进行降维处理。对所有数据流相关性特征进行选择,... 当前高速网络数据流分类处理时,忽略了冗余数据对分类结果的影响,使得分类结果 F1值较低。因此,提出了基于谱聚类算法的高速网络数据流快速分类方法。采用主成分分析法对高速网络数据流进行降维处理。对所有数据流相关性特征进行选择,去除冗余特征,保留有效的特征信息。应用支持向量机算法构建网络数据流快速分类模型,结合谱聚类算法对多数类样本进行聚类,组成新的数据集并将其输入到分类模型中得出相关的分类结果。实验结果表明,所提方法的平均F1值为0.95,F1值越大分类结果越准确,说明该方法能够满足高速网络数据流快速准确分类,具有优越的数据分类性能,应用价值更高。 展开更多
关键词 谱聚类算法 网络数据流 分类 特征选择 降维 支持向量机
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部