期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Multiobjective evolutionary algorithm for dynamic nonlinear constrained optimization problems 被引量:2
1
作者 Liu Chun'an Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期204-210,共7页
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th... A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP. 展开更多
关键词 dynamic optimization nonlinear constrained optimization evolutionary algorithm optimal solutions
下载PDF
Remarks on a benchmark nonlinear constrained optimization problem 被引量:1
2
作者 Luo Yazhong Lei Yongjun Tang Guojin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期551-553,共3页
Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulat... Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulated annealing using simplex method is employed in our study to solve the benchmark nonlinear constrained problem with mistaken formula and the best-known solution is obtained, whose optimality is testified by the Kuhn Tucker conditions. 展开更多
关键词 nonlinear constrained optimization parallel simulated annealing Kuhn-Tucker theorem.
下载PDF
Convergence analysis of a nonlinear Lagrange algorithm for general nonlinear constrained optimization problems
3
作者 HE Su-xiang WU Li-xun 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第3期352-366,共15页
The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives... The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported. 展开更多
关键词 nonlinear Lagrange algorithm general nonlinear constrained optimization problem solutionmapping multiplier mapping condition number.
下载PDF
A Trust-region Algorithm for Nonlinear Constrained Optimization Problem
4
作者 童小娇 周叔子 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2004年第3期445-460,共16页
This paper presents a new trust-region algorithm for general nonlinear constrained optimization problems. Certain equivalent KKT conditions of the problems are derived. Global convergence of the algorithm to a first-o... This paper presents a new trust-region algorithm for general nonlinear constrained optimization problems. Certain equivalent KKT conditions of the problems are derived. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps. Numerical example is also reported. 展开更多
关键词 nonlinear constrained optimization trust-region method global convergence.
下载PDF
AN SQP ALGORITHM WITH NONMONOTONE LINE SEARCHFOR GENERAL NONLINEAR CONSTRAINED OPTIMIZATION PROBLEM 被引量:3
5
作者 He, GP Diao, BQ Gao, ZY 《Journal of Computational Mathematics》 SCIE CSCD 1997年第2期179-192,共14页
In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subpro... In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subproblems for each iterations, but still can circumvent the so-called Maratos effect. The algorithm's global convergence and superlinear convergent rate have been proved. In addition, we can prove that, after a few iterations, correction subproblems need not be solved, so computation amount of the algorithm will be decreased much more. Numerical experiments show that the new algorithm is effective. 展开更多
关键词 SQP SI AN SQP ALGORITHM WITH NONMONOTONE LINE SEARCHFOR GENERAL nonlinear constrained optimization PROBLEM MATH LINE
原文传递
QP-FREE,TRUNCATED HYBRID METHODS FOR LARGE-SCALE NONLINEAR CONSTRAINED OPTIMIZATION 被引量:3
6
作者 Q. Ni(School of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China) 《Journal of Computational Mathematics》 SCIE CSCD 1997年第1期36-54,共19页
In this paper, a truncated hybrid method is proposed and developed for solving sparse large-scale nonlinear programming problems. In the hybrid method, a symmetric system of linear equations, instead of the usual quad... In this paper, a truncated hybrid method is proposed and developed for solving sparse large-scale nonlinear programming problems. In the hybrid method, a symmetric system of linear equations, instead of the usual quadratic programming subproblems, is solved at iterative process. In order to ensure the global convergence, a method of multiplier is inserted in iterative process. A truncated solution is determined for the system of linear equations and the unconstrained subproblems are solved by the limited memory BFGS algorithm such that the hybrid algorithm is suitable to the large-scale problems. The local convergence of the hybrid algorithm is proved and some numerical tests for medium-sized truss problem are given. 展开更多
关键词 QP-FREE TRUNCATED HYBRID METHODS FOR LARGE-SCALE nonlinear constrained optimization II
原文传递
A NONMONOTONIC TRUST REGION TECHNIQUE FOR NONLINEAR CONSTRAINED OPTIMIZATION
7
作者 Zhu De-tong(Shanghai Normal University, Shanghai, China ) 《Journal of Computational Mathematics》 SCIE CSCD 1995年第1期20-31,共12页
In this paper, a nonmonotonic trust region method for optimization problems with equality constraints is proposed by introducing a nonsmooth merit function and adopting a correction step. It is proved that all accumul... In this paper, a nonmonotonic trust region method for optimization problems with equality constraints is proposed by introducing a nonsmooth merit function and adopting a correction step. It is proved that all accumulation points of the iterates generated by the proposed algorithm are Kuhn-Tucker points and that the algorithm is q-superlinearly convergent. 展开更多
关键词 ZHANG A NONMONOTONIC TRUST REGION TECHNIQUE FOR nonlinear constrained optimization ER
原文传递
A New Strategy for Solving a Class of Constrained Nonlinear Optimization Problems Related to Weather and Climate Predictability 被引量:8
8
作者 段晚锁 骆海英 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第4期741-749,共9页
There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound o... There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate. 展开更多
关键词 constrained nonlinear optimization problems PREDICTABILITY ALGORITHMS
下载PDF
An Application of the Stability Theory in Constrained Nonlinear Optimization
9
作者 ZHOU Zong-fang 《Systems Science and Systems Engineering》 CSCD 2000年第1期28-33,共6页
This paper addresses an ordinary differential equations (ODE) approach to constrained nonlinear optimization problem. First, it proposes a method of finding the local optimal points for the problem with equality and i... This paper addresses an ordinary differential equations (ODE) approach to constrained nonlinear optimization problem. First, it proposes a method of finding the local optimal points for the problem with equality and inequality constraints. We prove the asymptotical stability of the singular points about partial variables. The condition of overall uniform asymptotical stability is also given. 展开更多
关键词 constrained nonlinear optimization ordinary differential equations asymptotic stability partial variables
原文传递
Model Predictive Control Strategy for Residential Battery Energy Storage System in Volatile Electricity Market with Uncertain Daily Cycling Load
10
作者 Dejan P.Jovanović Gerard F.Ledwich Geoffrey R.Walker 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期534-543,共10页
This paper presents a control strategy for residential battery energy storage systems,which is aware of volatile electricity markets and uncertain daily cycling loads.The economic benefits of energy trading for prosum... This paper presents a control strategy for residential battery energy storage systems,which is aware of volatile electricity markets and uncertain daily cycling loads.The economic benefits of energy trading for prosumers are achieved through a novel modification of a conventional model predictive control(MPC).The proposed control strategy guarantees an optimal global solution for the applied control action.A new cost function is introduced to model the effects of volatility on customer benefits more effectively.Specifically,the newly presented cost function models a probabilistic relation between the power exchanged with the grid,the net load,and the electricity market.The probabilistic calculation of the cost function shows the dependence on the mathematical expectation of market price and net load.Computational techniques for calculating this value are presented.The proposed strategy differs from the stochastic and robust MPC in that the cost is calculated across the market price and net load variations rather than across model constraints and parameter variations. 展开更多
关键词 Optimal control model predictive control(MPC) energy market nonlinear constrained optimization revenue for battery energy storage system Gaussian mixture model autoregressive integrated moving average model
原文传递
Optimal Configuration of a Redundant Robotic Arm: Compliance Approach 被引量:1
11
作者 金德闻 张济川 H. O. Dimo 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第3期281-285,共5页
Applications of robots in tasks where the robot's end-effector bears loads, such as manipulating or assembling an object, picking-and-placing loads, grinding or drilling, demand precision. One aspect that improve... Applications of robots in tasks where the robot's end-effector bears loads, such as manipulating or assembling an object, picking-and-placing loads, grinding or drilling, demand precision. One aspect that improves precision is the limitation, if not elimination, of manipulator compliance. This paper presents a manipulator compliance optimization approach for determining an optimal manipulator configuration for a given position in the robot's task space. A numerical solution for minimal compliance, a nonlinear constrained optimization problem, is presented for an arbitrary position and illustrated by an example, using a model developed on ADAMS software and using MATLAB optimization tools. Also, this paper investigates the optimal value function for robot tasks in which the tool-point is subjected to applied force as it generates an important trajectory such as in grinding processes. The optimal value function is needed for optimal configuration control. 展开更多
关键词 optimal configuration minimal compliance nonlinear constrained optimization optimal value function
原文传递
AN AUGMENTED LAGRANGIAN TRUST REGION METHOD WITH A BI-OBJECT STRATEGY 被引量:1
12
作者 Caixia Kou Zhongwen Chen +1 位作者 Yuhong Dai Haifei Han 《Journal of Computational Mathematics》 SCIE CSCD 2018年第3期331-350,共20页
An augmented Lagrangian trust region method with a bi=object strategy is proposed for solving nonlinear equality constrained optimization, which falls in between penalty-type methods and penalty-free ones. At each ite... An augmented Lagrangian trust region method with a bi=object strategy is proposed for solving nonlinear equality constrained optimization, which falls in between penalty-type methods and penalty-free ones. At each iteration, a trial step is computed by minimizing a quadratic approximation model to the augmented Lagrangian function within a trust region. The model is a standard trust region subproblem for unconstrained optimization and hence can efficiently be solved by many existing methods. To choose the penalty parameter, an auxiliary trust region subproblem is introduced related to the constraint violation. It turns out that the penalty parameter need not be monotonically increasing and will not tend to infinity. A bi-object strategy, which is related to the objective function and the measure of constraint violation, is utilized to decide whether the trial step will be accepted or not. Global convergence of the method is established under mild assumptions. Numerical experiments are made, which illustrate the efficiency of the algorithm on various difficult situations. 展开更多
关键词 nonlinear constrained optimization Augmented Lagrangian function Bi-object strategy Global convergence.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部