We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Co...We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions.展开更多
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe...In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.展开更多
The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid...The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense.展开更多
This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dyna...This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering.展开更多
The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper...The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremend...Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.展开更多
In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperature...In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.展开更多
In this paper,the oscillation criteria for the solutions of the nonlinear differential equations of neutral type of the forms:[x(t)+p(t)x(σ(t))]″+q(t)f(x(τ(t)))g(x′(t))=0and[x(t)+p(t)x(σ(t))]″+q(t)f(x(t),x(τ(t)...In this paper,the oscillation criteria for the solutions of the nonlinear differential equations of neutral type of the forms:[x(t)+p(t)x(σ(t))]″+q(t)f(x(τ(t)))g(x′(t))=0and[x(t)+p(t)x(σ(t))]″+q(t)f(x(t),x(τ(t)))g(x′(t))=0are obtained.展开更多
A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for...A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.展开更多
This paper investigates the oscillatory and nonoscillatory behaviour of solu- tions of a class of third order nonlinear differential equations. Results extend and improve some known results in the literature.
Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equati...Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.展开更多
In this paper, using the tanh-function method, we introduce a new approach to solitary wave solutions for solving nonlinear PDEs. The proposed method is based on adding integration constants to the resulting nonlinear...In this paper, using the tanh-function method, we introduce a new approach to solitary wave solutions for solving nonlinear PDEs. The proposed method is based on adding integration constants to the resulting nonlinear ODEs from the nonlinear PDEs using the wave transformation. Also, we use a transformation related to those integration constants. Some examples are considered to find their exact solutions such as KdV- Burgers class and Fisher, Boussinesq and Klein-Gordon equations. Moreover, we discuss the geometric interpretations of the resulting exact solutions.展开更多
The purpose of this article is to establish the regularity of the weak solutions for the nonlinear biharmonic equation {△^2u + a(x)u = g(x, u)u∈ H^2(R^N), where the condition u∈ H^2(R^N) plays the role o...The purpose of this article is to establish the regularity of the weak solutions for the nonlinear biharmonic equation {△^2u + a(x)u = g(x, u)u∈ H^2(R^N), where the condition u∈ H^2(R^N) plays the role of a boundary value condition, and as well expresses explicitly that the differential equation is to be satisfied in the weak sense.展开更多
From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that ...From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this new approach, and more shock wave solutions or solitary wave solutions can be got under their limit conditions.展开更多
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wav...The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.展开更多
A monotone iterative method for some discontinuous variational boundary problems is given, the convergence of iterative solutions is proved by the theory of partially ordered sets. It can be regarded as a generalizati...A monotone iterative method for some discontinuous variational boundary problems is given, the convergence of iterative solutions is proved by the theory of partially ordered sets. It can be regarded as a generalization of the classical monotone iteration theory for continuous problems.展开更多
A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equa...A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation, generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.展开更多
基金supported by the NSFC(12261044)the STP of Education Department of Jiangxi Province of China(GJJ210302)。
文摘We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions.
基金supported by the National Natural Science Foundation of China(12071491,12001113)。
文摘In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.
文摘The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense.
文摘This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering.
文摘The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
文摘Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.
文摘In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
基金Project(51275414)supported by the National Natural Science Foundation of ChinaProject(2015JM5204)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(Z2015064)supported by the Graduate Starting Seed Fund of the Northwestern Polytechnical University,ChinaProject(130-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.
文摘In this paper,the oscillation criteria for the solutions of the nonlinear differential equations of neutral type of the forms:[x(t)+p(t)x(σ(t))]″+q(t)f(x(τ(t)))g(x′(t))=0and[x(t)+p(t)x(σ(t))]″+q(t)f(x(t),x(τ(t)))g(x′(t))=0are obtained.
基金The Importent Study Profect of the National Natural Science Poundation of China(90211004)The Natural Sciences Foundation of Zheiiang(102009)
文摘A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.
文摘This paper investigates the oscillatory and nonoscillatory behaviour of solu- tions of a class of third order nonlinear differential equations. Results extend and improve some known results in the literature.
文摘Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.
文摘In this paper, using the tanh-function method, we introduce a new approach to solitary wave solutions for solving nonlinear PDEs. The proposed method is based on adding integration constants to the resulting nonlinear ODEs from the nonlinear PDEs using the wave transformation. Also, we use a transformation related to those integration constants. Some examples are considered to find their exact solutions such as KdV- Burgers class and Fisher, Boussinesq and Klein-Gordon equations. Moreover, we discuss the geometric interpretations of the resulting exact solutions.
基金Supported by the National Natural Science Foundation of China (10631030)PHD specialized grant of Ministry of Education of China (20060511001) and supported in part by the Xiao-Xiang Special Fund, Hunan
文摘The purpose of this article is to establish the regularity of the weak solutions for the nonlinear biharmonic equation {△^2u + a(x)u = g(x, u)u∈ H^2(R^N), where the condition u∈ H^2(R^N) plays the role of a boundary value condition, and as well expresses explicitly that the differential equation is to be satisfied in the weak sense.
文摘From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this new approach, and more shock wave solutions or solitary wave solutions can be got under their limit conditions.
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
文摘The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.
文摘A monotone iterative method for some discontinuous variational boundary problems is given, the convergence of iterative solutions is proved by the theory of partially ordered sets. It can be regarded as a generalization of the classical monotone iteration theory for continuous problems.
文摘A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation, generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.