Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observationa...Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observational data and a damped slab model. It is found that the DWs, which are dominated by clockwise wind components, are prominent at our observational site. The DWs increase after the passage of the typhoon from 1 to about 4 m/s, which may be due to the decrease of the sea surface temperature caused by the passage of the typhoon. Kinetic energy spectra and bicoherence methods reveal nonlinear interactions between the inertial currents and the 2MK3 tidal constituent at our observational site. The slab damped model reproduces the inertial currents successfully induced by the total observed winds, and it is shown that the inertial currents induced by DWs are positively proportional to the DWs speed. Even though the observed inertial currents are distinct, the proportion of inertial currents induced by DWs to those induced by the total observed winds is just 0.7%/4% before/after the passage of typhoon. This shows that the inertial currents induced by the DWs are unimportant near the Xisha Islands during the typhoon season.展开更多
The particle trajectory on a weakly nonlinear progressive surface wave obliquely interacting with a uniform current is studied by using an Euler-Lagrange transformation.The third-order asymptotic solution is a periodi...The particle trajectory on a weakly nonlinear progressive surface wave obliquely interacting with a uniform current is studied by using an Euler-Lagrange transformation.The third-order asymptotic solution is a periodic bounded function of Lagrangian labels and time,which imply that the entire solution is uniformly-valid.The explicit parametric solution highlights the trajectory of a water particle and mass transport associated with a particle displacement can now be obtained directly in Lagrangian form.The angular frequency and Lagrangian mean level of the particle motion in Lagrangian form differ from those of the Eulerian.The variations in the water particle orbits resulting from the oblique interaction with a steady uniform current of different magnitudes are also investigated.展开更多
The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a ...The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a WKBJ-type perturbation approach. Synchronous, superharmonic and in particular subharmonic resonance were selectively excited over the fast varying topography with corresponding wavelengths. For a steady current the dynamical system is autonomous and the possible nonlinear steady states and their stability were investigated. When the current has a small oscillatory component the dynamical system becomes non-autonomous, chaos is now possible.展开更多
Under the assumption of weak shear current with varying vorticity in water and weak air pressure the Zakharov theory is extended to include the effects of vorticity and air pressure on the modulation of water waves. T...Under the assumption of weak shear current with varying vorticity in water and weak air pressure the Zakharov theory is extended to include the effects of vorticity and air pressure on the modulation of water waves. This new equation is used to examine the influence of current and wind on the Benjamin-Feir sideband instability and long-time evolution of wavetrain. As strength of the current increases the bandwidth is found broadened, and the maximum growth rate of sidebands decreased. Periodic solution of sidebands in the presence of current is indicated, which means that shear current does not affect the downshift of wave spectrum peak. Energy input by imposing the air pressure leads to the enhancement of the lower sideband, which is in agreement with the finding of Hara and Mei (1991).展开更多
This paper presents the comparison of various current control strategies employed for an interleaved power factor correction (PFC) boost converter for improving the power quality. The major control strategies discusse...This paper presents the comparison of various current control strategies employed for an interleaved power factor correction (PFC) boost converter for improving the power quality. The major control strategies discussed in this paper are: peak current control, average current control, hysteresis control, borderline current control and non-linear control. These strategies are implemented in MATLAB/SIMULINK and the performance of the proposed converter is compared under open loop and closed loop operation. From the results, the input current waveform was close to input voltage waveform implying improved power factor and reduced total harmonic distortion for nonlinear current control technique. Experimental results validate the proposed method.展开更多
An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is w...An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.展开更多
The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) e...The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center.展开更多
Active power filter (APF) based on voltage source inverter (VSI) is one of the important measures for handling the power quality problem. Mathematically, the APF model in a power grid is a typical nonlinear one. T...Active power filter (APF) based on voltage source inverter (VSI) is one of the important measures for handling the power quality problem. Mathematically, the APF model in a power grid is a typical nonlinear one. The idea of passivity is a powerful tool to study the stabilization of such a nonlinear system. In this paper, a state-space model of the four-leg APF is derived, based on which a new H-infinity controller for current tracking is proposed from the passivity point of view. It can achieve not only asymptotic tracking, but also disturbance attenuation in the sense of L2-gain. Subsequently, a sufficient condition to guarantee the boundedness and desired mean of the DC voltage is also given. This straightforward condition is consistent with the power-balancing law of electrical circuits. Simulations performed on PSCAD platform verify the validity of the new approach.展开更多
To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic array...To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method.展开更多
As a results of magnetoelastic interaction, the mechanical behavior of current-carrying coil structures, such as deformation and instability, is a key problem in the design of strong held magnets. In this paper, a non...As a results of magnetoelastic interaction, the mechanical behavior of current-carrying coil structures, such as deformation and instability, is a key problem in the design of strong held magnets. In this paper, a nonlinear mathematical model is presented to describe the deformation and buckling of D-type current-carrying coils, based on the Biot-Savart law and the bending theory of curved beams. The bending deformation, the critical value of current for the magnetoelastic buckling of the current-carrying coil, and the effects of the type and number of supports at middle part of the bending coil on the critical value are quantitatively investigated by a semi-analytical and semi-numerical method. The numerical results are shown to be in good agreement with the experimental data.展开更多
This paper reports that in the quantization of electromagnetic field in the dielectrics, the wave equation with regard to the Green function is analytically solved by a direct integral method for a quadratic continuou...This paper reports that in the quantization of electromagnetic field in the dielectrics, the wave equation with regard to the Green function is analytically solved by a direct integral method for a quadratic continuous nonlinear absorptive dielectric medium. The quantization of the electromagnetic field in such a nonlinear absorptive dielectric is carried out for which the material dielectric function is assumed as a separable variable about the frequency and the space coordinate. The vacuum field fluctuations for different spatial continuous variations of dielectric function are numerically calculated, which shows that the present result is self-consistent.展开更多
A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wav...A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wave velocity field is expressed in terms of the horizontal and vertical wave velocity components at an arbitrary water depth level. Linear operators are introduced to improve the accuracy of the kinematic condition at the sea bottom. The dynamic and kinematic conditions at the free surface are expressed in terms of wave velocity variables defined directly on the free surface. The new equations provide high accuracy of linear properties as well as nonlinear properties from shallow to deep water, and extend the applicable range of relative water depth in the case of opposing currents.展开更多
Ning et al. (2015) developed a 2D fully nonlinear potential model to investigate the interaction between focused waves and uniform currents. The effects of uniform current on focusing wave crest, focal time and foca...Ning et al. (2015) developed a 2D fully nonlinear potential model to investigate the interaction between focused waves and uniform currents. The effects of uniform current on focusing wave crest, focal time and focal position were given. As its extension, harmonic energy transfer for focused waves in uniform current is studied using the proposed model by Ning et al. (2015) and Fast Fourier Transformation (FFT) technique in this study. It shows that the strong opposing currents, inducing partial wave blocking and reducing the extreme wave crest, make the nonlinear energy transfer non-reversible in the focusing and defocusing processes. The numerical results also provide an explanation to address the shifts of focal points in consideration of the combination effects of wave nonlinearity and current.展开更多
Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load...Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load of TLP in moving coordinating system. Infinitesimal method is applied to divide columns and pontoons into small parts. Time domain motion equation is solved by Runge-Kutta integration scheme. Jonswap spectrum is simulated in the random wave, current is simulated by linear interpolation, and NPD spectrum is applied as wind spectrum. The Monte Carlo method is used to simulate random waves and fluctuated wind. Coupling dynamic response, change of tendon tension and riser tension in different sea conditions are analyzed by power spectral density (PSD). The influence of approach angle on dynamic response of TLP and tendon tension is compared.展开更多
基金The Knowledge Innovation Program of the Chinese Academy of Sciences under contract No.SQ201206the Innovation Group Program of State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences,under contract No.LTOZZ1201+1 种基金the National Basic Research Program under contract No.2013CB956101the National Natural Science Foundation of China under contract No.41025019
文摘Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observational data and a damped slab model. It is found that the DWs, which are dominated by clockwise wind components, are prominent at our observational site. The DWs increase after the passage of the typhoon from 1 to about 4 m/s, which may be due to the decrease of the sea surface temperature caused by the passage of the typhoon. Kinetic energy spectra and bicoherence methods reveal nonlinear interactions between the inertial currents and the 2MK3 tidal constituent at our observational site. The slab damped model reproduces the inertial currents successfully induced by the total observed winds, and it is shown that the inertial currents induced by DWs are positively proportional to the DWs speed. Even though the observed inertial currents are distinct, the proportion of inertial currents induced by DWs to those induced by the total observed winds is just 0.7%/4% before/after the passage of typhoon. This shows that the inertial currents induced by the DWs are unimportant near the Xisha Islands during the typhoon season.
基金National Science Council in Taiwan 97-2221-E-230-023
文摘The particle trajectory on a weakly nonlinear progressive surface wave obliquely interacting with a uniform current is studied by using an Euler-Lagrange transformation.The third-order asymptotic solution is a periodic bounded function of Lagrangian labels and time,which imply that the entire solution is uniformly-valid.The explicit parametric solution highlights the trajectory of a water particle and mass transport associated with a particle displacement can now be obtained directly in Lagrangian form.The angular frequency and Lagrangian mean level of the particle motion in Lagrangian form differ from those of the Eulerian.The variations in the water particle orbits resulting from the oblique interaction with a steady uniform current of different magnitudes are also investigated.
文摘The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a WKBJ-type perturbation approach. Synchronous, superharmonic and in particular subharmonic resonance were selectively excited over the fast varying topography with corresponding wavelengths. For a steady current the dynamical system is autonomous and the possible nonlinear steady states and their stability were investigated. When the current has a small oscillatory component the dynamical system becomes non-autonomous, chaos is now possible.
基金The project supported by the National Natural Science Foundation of China
文摘Under the assumption of weak shear current with varying vorticity in water and weak air pressure the Zakharov theory is extended to include the effects of vorticity and air pressure on the modulation of water waves. This new equation is used to examine the influence of current and wind on the Benjamin-Feir sideband instability and long-time evolution of wavetrain. As strength of the current increases the bandwidth is found broadened, and the maximum growth rate of sidebands decreased. Periodic solution of sidebands in the presence of current is indicated, which means that shear current does not affect the downshift of wave spectrum peak. Energy input by imposing the air pressure leads to the enhancement of the lower sideband, which is in agreement with the finding of Hara and Mei (1991).
文摘This paper presents the comparison of various current control strategies employed for an interleaved power factor correction (PFC) boost converter for improving the power quality. The major control strategies discussed in this paper are: peak current control, average current control, hysteresis control, borderline current control and non-linear control. These strategies are implemented in MATLAB/SIMULINK and the performance of the proposed converter is compared under open loop and closed loop operation. From the results, the input current waveform was close to input voltage waveform implying improved power factor and reduced total harmonic distortion for nonlinear current control technique. Experimental results validate the proposed method.
文摘An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.40876094 and JQ10974106)the National High Technology Research and Development Program of China(Grant Nos.2009AA09Z102 and 2008AA09A403)+1 种基金the Excellent Youth Fundation of Shandong Scientific Committee,China(Grant No.JQ201018)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2009AZ002)
文摘The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center.
基金This work was supported by the National Natural Science Foundation of China(No.50377018, K5112515E1).
文摘Active power filter (APF) based on voltage source inverter (VSI) is one of the important measures for handling the power quality problem. Mathematically, the APF model in a power grid is a typical nonlinear one. The idea of passivity is a powerful tool to study the stabilization of such a nonlinear system. In this paper, a state-space model of the four-leg APF is derived, based on which a new H-infinity controller for current tracking is proposed from the passivity point of view. It can achieve not only asymptotic tracking, but also disturbance attenuation in the sense of L2-gain. Subsequently, a sufficient condition to guarantee the boundedness and desired mean of the DC voltage is also given. This straightforward condition is consistent with the power-balancing law of electrical circuits. Simulations performed on PSCAD platform verify the validity of the new approach.
基金Supported by the National Natural Science Foundation of China (60674052)
文摘To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method.
基金The project supported by the National Natural Science Foundation of Chinathe Science Foundation of the State Education Committee of China for Outstanding Teacher in Universities the Natural Science Foundation of Gansu Province of China
文摘As a results of magnetoelastic interaction, the mechanical behavior of current-carrying coil structures, such as deformation and instability, is a key problem in the design of strong held magnets. In this paper, a nonlinear mathematical model is presented to describe the deformation and buckling of D-type current-carrying coils, based on the Biot-Savart law and the bending theory of curved beams. The bending deformation, the critical value of current for the magnetoelastic buckling of the current-carrying coil, and the effects of the type and number of supports at middle part of the bending coil on the critical value are quantitatively investigated by a semi-analytical and semi-numerical method. The numerical results are shown to be in good agreement with the experimental data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10574010 and 10974010)Beijing Commission of Education (Grant No. 1010005466903)
文摘This paper reports that in the quantization of electromagnetic field in the dielectrics, the wave equation with regard to the Green function is analytically solved by a direct integral method for a quadratic continuous nonlinear absorptive dielectric medium. The quantization of the electromagnetic field in such a nonlinear absorptive dielectric is carried out for which the material dielectric function is assumed as a separable variable about the frequency and the space coordinate. The vacuum field fluctuations for different spatial continuous variations of dielectric function are numerically calculated, which shows that the present result is self-consistent.
基金This work was financially supported by the Science Foundation of National Education Committee of China (Grant No.40106008) and by LED, South China Sea Institute of Oceanology, Chinese Academy of Sciences.
文摘A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wave velocity field is expressed in terms of the horizontal and vertical wave velocity components at an arbitrary water depth level. Linear operators are introduced to improve the accuracy of the kinematic condition at the sea bottom. The dynamic and kinematic conditions at the free surface are expressed in terms of wave velocity variables defined directly on the free surface. The new equations provide high accuracy of linear properties as well as nonlinear properties from shallow to deep water, and extend the applicable range of relative water depth in the case of opposing currents.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51679036 and 51490672)the Royal Academy of Engineering under the UK-China Industry Academia Partnership Programme(Grant No.UK-CIAPP\73)the Program for New Century Excellent Talents in University(Grant No.NCET-13-0076)
文摘Ning et al. (2015) developed a 2D fully nonlinear potential model to investigate the interaction between focused waves and uniform currents. The effects of uniform current on focusing wave crest, focal time and focal position were given. As its extension, harmonic energy transfer for focused waves in uniform current is studied using the proposed model by Ning et al. (2015) and Fast Fourier Transformation (FFT) technique in this study. It shows that the strong opposing currents, inducing partial wave blocking and reducing the extreme wave crest, make the nonlinear energy transfer non-reversible in the focusing and defocusing processes. The numerical results also provide an explanation to address the shifts of focal points in consideration of the combination effects of wave nonlinearity and current.
文摘Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load of TLP in moving coordinating system. Infinitesimal method is applied to divide columns and pontoons into small parts. Time domain motion equation is solved by Runge-Kutta integration scheme. Jonswap spectrum is simulated in the random wave, current is simulated by linear interpolation, and NPD spectrum is applied as wind spectrum. The Monte Carlo method is used to simulate random waves and fluctuated wind. Coupling dynamic response, change of tendon tension and riser tension in different sea conditions are analyzed by power spectral density (PSD). The influence of approach angle on dynamic response of TLP and tendon tension is compared.