The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations ...The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed.展开更多
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to thi...We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.展开更多
In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie po...In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.展开更多
In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth...In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth function to be determined. The invariant sets and exact sohltions to nonlinear diffusion equation ut = ( D(u)ux)x + Q(x, u)ux + P(x, u), are discussed. It is shown that there exist several classes of solutions to the equation that belong to the invariant set Eo.展开更多
A system of nonlinear diffusion equations with three components is studied via the potential symmetry method. It is shown that the system admits the potential symmetries for certain diffusion terms. The invariant solu...A system of nonlinear diffusion equations with three components is studied via the potential symmetry method. It is shown that the system admits the potential symmetries for certain diffusion terms. The invariant solutions assoeiated with the potential symmetries are obtained.展开更多
In this paper,we analyze the large time behavior of nonnegative solutions to the doubly nonlinear diffusion equation u_(t)−div(|∇u^(m)|^(p−2)∇u^(m))=0 in R^(N)with p>1,m>0 and m(p−1)−1>0.By using the finite p...In this paper,we analyze the large time behavior of nonnegative solutions to the doubly nonlinear diffusion equation u_(t)−div(|∇u^(m)|^(p−2)∇u^(m))=0 in R^(N)with p>1,m>0 and m(p−1)−1>0.By using the finite propagation property and the L^(1)−L^(∞)smoothing effect,we find that the complicated asymptotic behavior of the rescaled solutions t^(μ/2)u(t^(β)⋅,t)for 0<μ<2 N/(N[m(p−1)−1]+p)andβ>(2−μ[m(p−1)−1])/(2 p)can take place.展开更多
Let (M,g) be a complete non-compact Riemannian manifold with the m- dimensional Bakry-Emery Ricci curvature bounded below by a non-positive constant. In this paper, we give a localized Hamilton-type gradient estimat...Let (M,g) be a complete non-compact Riemannian manifold with the m- dimensional Bakry-Emery Ricci curvature bounded below by a non-positive constant. In this paper, we give a localized Hamilton-type gradient estimate for the positive smooth bounded solutions to the following nonlinear diffusion equation ut = △u - △↓ φ· △ ↓u - aulogu- bu,where φ is a C^2 function, and a ≠ 0 and b are two real constants. This work generalizes the results of Souplet and Zhang (Bull. London Math. Soc., 38 (2006), pp. 1045-1053) and Wu (Preprint, 2008).展开更多
This paper deals with the gradient estimates of the Hamilton type for the positive solutions to the following nonlinear diffusion equation:on a complete noncompact Riemannian manifold with a Bakry-Emery Ricci curvatu...This paper deals with the gradient estimates of the Hamilton type for the positive solutions to the following nonlinear diffusion equation:on a complete noncompact Riemannian manifold with a Bakry-Emery Ricci curvature bounded below by -K (K 〉 0), where φ is a C2 function, a(x) and b(x) are C1 functions with certain conditions.展开更多
One of the most interesting problems of nonlinear differential equations is the construction of partial solutions. A new method is presented in this paper to seek special solutions of nonlinear diffusion equations. Th...One of the most interesting problems of nonlinear differential equations is the construction of partial solutions. A new method is presented in this paper to seek special solutions of nonlinear diffusion equations. This method is based on seeking suitable function to satisfy Bernolli equation. Many new special solutions are obtained.展开更多
A new method - perturbative summation to infinite order is presented to obtain the anomalous dimension in the solution of the modified porous medium equation. The result is the same as that in the renormalization grou...A new method - perturbative summation to infinite order is presented to obtain the anomalous dimension in the solution of the modified porous medium equation. The result is the same as that in the renormalization group (RG) approach. It gives us an insight into the anomalous exponent in the asymptotic solution of the modified porous medium equation in the RG approach. Based on this discussion, we can see that the anomalous dimension appears naturally in the problem and the nonlinearity reflects the anomalous long-time behavior of the system.展开更多
In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK ...In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK is used for time integration of the corresponding equation.To overcome a well-known difficulty of numerical instability associated with the computation of the exponential operator,the Padéapproach is used for such an exponential operator approximation,which in turn leads to the corresponding ETD-Padéschemes.An unconditional L^(2) numerical stability is proved for the proposed numerical schemes,under a global Lipshitz continuity assumption.In addition,optimal rate error estimates are provided,which gives the convergence order of O(k^(3)+h^(r))(ETD3-Padé)or O(k^(4)+h^(r))(ETD4-Padé)in the L^(2)norm,respectively.Numerical experiments are presented to demonstrate the robustness of the proposed numerical schemes.展开更多
The authors prove the global null controllability for the 1-dimensional nonlinear slow diffusion equation by using both a boundary and an internal control. They assume that the internal control is only time dependent....The authors prove the global null controllability for the 1-dimensional nonlinear slow diffusion equation by using both a boundary and an internal control. They assume that the internal control is only time dependent. The proof relies on the return method in combination with some local controllability results for nondegenerate equations and rescaling techniques.展开更多
In this paper, the nonlinear reaction diffusion equation with boundary perturbation is considered. Using discussions on solvability, the perturbed solution of original problem is obtained, and the uniform validity of ...In this paper, the nonlinear reaction diffusion equation with boundary perturbation is considered. Using discussions on solvability, the perturbed solution of original problem is obtained, and the uniform validity of the solution is proved.展开更多
In this paper, we consider a nonlinear system of reaction diffusion equa- tions arising from mathematical neuroscience and two nonlinear scalar reaction diffusion equations under some assumptions on their coefficients...In this paper, we consider a nonlinear system of reaction diffusion equa- tions arising from mathematical neuroscience and two nonlinear scalar reaction diffusion equations under some assumptions on their coefficients. The main purpose is to couple together linearized stability criterion (the equivalence of the nonlinear stability, the linear stability and the spectral sta- bility of the standing pulse solutions) and Evans functions to accomplish the existence and instability of standing pulse solutions of the nonlinear system of reaction diffusion equations and the nonlinear scalar reaction diffusion equa- tions. The Evans functions for the standing pulse solutions are constructed explicitly.展开更多
The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonl...The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary differential equations, which is equivalent to a kind of higher=order conditional Lie-B^icklund symmetries of the equations. As a consequence, a number of new solutions to the inhomogeneous nonlinear diffusion equations are constructed explicitly or reduced to solving finite-dimensional dynamical sys- tems.展开更多
The two-dimensional spreading under gravity of a thin fluid film with suction (fluid leak-off) or blowing (fluid injection) at the base is considered. The thin fluid film approximation is imposed. The height of the th...The two-dimensional spreading under gravity of a thin fluid film with suction (fluid leak-off) or blowing (fluid injection) at the base is considered. The thin fluid film approximation is imposed. The height of the thin film satisfies a nonlinear diffusion equation with a source/sink term. The Lie point symmetries of the nonlinear diffusion equation are derived and exist, which provided the fluid velocity at the base, <em>v<sub>n</sub></em> satisfies a first order linear partial differential equation. The general form has algebraic time dependence while a special case has exponential time dependence. The solution in which <em>v<sub>n</sub></em> is proportional to the height of the thin film is studied. The width of the base always increases with time even for suction while the height decreases with time for sufficiently weak blowing. The streamlines of the fluid flow inside the thin film are plotted by first solving a cubic equation. For sufficiently weak blowing there is a dividing streamline, emanating from the stagnation point on the centre line which separates the fluid flow into two regions, a lower region consisting of rising fluid and dominated by fluid injection at the base and an upper region consisting of descending fluid and dominated by spreading due to gravity. For sufficiently strong blowing the lower region expands to completely fill the whole thin film.展开更多
This paper studies coupled nonlinear diffusion equations with more general nonlinearities, subject to homogeneous Neumann boundary conditions. The necessary and sufficient conditions are obtained for the existence of ...This paper studies coupled nonlinear diffusion equations with more general nonlinearities, subject to homogeneous Neumann boundary conditions. The necessary and sufficient conditions are obtained for the existence of generalized solutions of the system, which extend the known results for nonlinear diffusion systems with more special nonlinearities.展开更多
The incompatibilities between the initial and boundary data will cause singularities at the time-space corners,which in turn adversely affect the accuracy of the numerical schemes used to compute the solutions.We stud...The incompatibilities between the initial and boundary data will cause singularities at the time-space corners,which in turn adversely affect the accuracy of the numerical schemes used to compute the solutions.We study the corner singularity issue for nonlinear evolution equations in 1D,and propose two remedy procedures that effectively recover much of the accuracy of the numerical scheme in use.Applications of the remedy procedures to the 1D viscous Burgers equation,and to the 1D nonlinear reaction-diffusion equation are presented.The remedy procedures are applicable to other nonlinear diffusion equations as well.展开更多
In this paper,we apply Ma’s variation of parameters method(VPM)for solving Fisher’s equations.The suggested algorithm proved to be very efficient and finds the solution without any discretization,linearization,pertu...In this paper,we apply Ma’s variation of parameters method(VPM)for solving Fisher’s equations.The suggested algorithm proved to be very efficient and finds the solution without any discretization,linearization,perturbation or restrictive assumptions.Numerical results reveal the complete reliability of the proposed VPM.展开更多
基金The project supported in part by National Natural Science Foundation of China under Grant No.19901027the Natural Science Foundation of Shaanxi Province of China
文摘The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371098 and the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968
文摘We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.
基金The project supported by National Natural Science Foundation of China under Grant No.10671156the Program for New CenturyExcellent Talents in Universities under Grant No.NCET-04-0968
文摘In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.
基金National Natural Science Foundation of China under Grant Nos.10472091,10332030,and 10502042the Natural Science Foundation of Shaanxi Province under Grant No.2003A03
文摘In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth function to be determined. The invariant sets and exact sohltions to nonlinear diffusion equation ut = ( D(u)ux)x + Q(x, u)ux + P(x, u), are discussed. It is shown that there exist several classes of solutions to the equation that belong to the invariant set Eo.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10371098 and 10447007 and the Program for New Century Excellent Talents in Universities (NCET)
文摘A system of nonlinear diffusion equations with three components is studied via the potential symmetry method. It is shown that the system admits the potential symmetries for certain diffusion terms. The invariant solutions assoeiated with the potential symmetries are obtained.
基金This research was supported by the NSFC(Grant No.12171166)by the NSF of CQ(Grant No.cstc2019jcyj-msxmX0381)by the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant Nos.KJZD-M202001201,KJZD-M202201202).
文摘In this paper,we analyze the large time behavior of nonnegative solutions to the doubly nonlinear diffusion equation u_(t)−div(|∇u^(m)|^(p−2)∇u^(m))=0 in R^(N)with p>1,m>0 and m(p−1)−1>0.By using the finite propagation property and the L^(1)−L^(∞)smoothing effect,we find that the complicated asymptotic behavior of the rescaled solutions t^(μ/2)u(t^(β)⋅,t)for 0<μ<2 N/(N[m(p−1)−1]+p)andβ>(2−μ[m(p−1)−1])/(2 p)can take place.
文摘Let (M,g) be a complete non-compact Riemannian manifold with the m- dimensional Bakry-Emery Ricci curvature bounded below by a non-positive constant. In this paper, we give a localized Hamilton-type gradient estimate for the positive smooth bounded solutions to the following nonlinear diffusion equation ut = △u - △↓ φ· △ ↓u - aulogu- bu,where φ is a C^2 function, and a ≠ 0 and b are two real constants. This work generalizes the results of Souplet and Zhang (Bull. London Math. Soc., 38 (2006), pp. 1045-1053) and Wu (Preprint, 2008).
基金supported by the National Natural Science Foundation of China(Nos.11171253,11471175)the Fujian Provincial National Natural Science Foundation of China(No.2012J01015)+1 种基金the Startup Foundation for Introducing Talent of Nuist(No.2014r030)the Pre-research Foundation of NSFC(No.2014x025)
文摘This paper deals with the gradient estimates of the Hamilton type for the positive solutions to the following nonlinear diffusion equation:on a complete noncompact Riemannian manifold with a Bakry-Emery Ricci curvature bounded below by -K (K 〉 0), where φ is a C2 function, a(x) and b(x) are C1 functions with certain conditions.
基金Supported by the Natural Science Foundation Project of Chongqing(CSTC,2014jcyj A00026)Science and Technology Research Project of Chongqing Municipal Education Commission(KJ1400614)
文摘One of the most interesting problems of nonlinear differential equations is the construction of partial solutions. A new method is presented in this paper to seek special solutions of nonlinear diffusion equations. This method is based on seeking suitable function to satisfy Bernolli equation. Many new special solutions are obtained.
文摘A new method - perturbative summation to infinite order is presented to obtain the anomalous dimension in the solution of the modified porous medium equation. The result is the same as that in the renormalization group (RG) approach. It gives us an insight into the anomalous exponent in the asymptotic solution of the modified porous medium equation in the RG approach. Based on this discussion, we can see that the anomalous dimension appears naturally in the problem and the nonlinearity reflects the anomalous long-time behavior of the system.
文摘In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK is used for time integration of the corresponding equation.To overcome a well-known difficulty of numerical instability associated with the computation of the exponential operator,the Padéapproach is used for such an exponential operator approximation,which in turn leads to the corresponding ETD-Padéschemes.An unconditional L^(2) numerical stability is proved for the proposed numerical schemes,under a global Lipshitz continuity assumption.In addition,optimal rate error estimates are provided,which gives the convergence order of O(k^(3)+h^(r))(ETD3-Padé)or O(k^(4)+h^(r))(ETD4-Padé)in the L^(2)norm,respectively.Numerical experiments are presented to demonstrate the robustness of the proposed numerical schemes.
基金Project supported by the ITN FIRST of the Seventh Framework Programme of the European Community (No. 238702)the ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7)+1 种基金DGISPI of Spain (Project MTM2011-26119)the Research Group MOMAT(No. 910480) supported by UCM
文摘The authors prove the global null controllability for the 1-dimensional nonlinear slow diffusion equation by using both a boundary and an internal control. They assume that the internal control is only time dependent. The proof relies on the return method in combination with some local controllability results for nondegenerate equations and rescaling techniques.
基金Supported by the National Natural Science Foundation of China (40676016 and 40876010)the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-Q03-08)Construct Project of E-Institutes of Shanghai Municipal Education Commission (E03004)
文摘In this paper, the nonlinear reaction diffusion equation with boundary perturbation is considered. Using discussions on solvability, the perturbed solution of original problem is obtained, and the uniform validity of the solution is proved.
基金supported by a Faculty Research Grant of Lehigh University
文摘In this paper, we consider a nonlinear system of reaction diffusion equa- tions arising from mathematical neuroscience and two nonlinear scalar reaction diffusion equations under some assumptions on their coefficients. The main purpose is to couple together linearized stability criterion (the equivalence of the nonlinear stability, the linear stability and the spectral sta- bility of the standing pulse solutions) and Evans functions to accomplish the existence and instability of standing pulse solutions of the nonlinear system of reaction diffusion equations and the nonlinear scalar reaction diffusion equa- tions. The Evans functions for the standing pulse solutions are constructed explicitly.
基金supported by National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.10925104)the PhD Programs Foundation of Ministry of Education of China(Grant No.20106101110008)the United Funds of NSFC and Henan for Talent Training(Grant No.U1204104)
文摘The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary differential equations, which is equivalent to a kind of higher=order conditional Lie-B^icklund symmetries of the equations. As a consequence, a number of new solutions to the inhomogeneous nonlinear diffusion equations are constructed explicitly or reduced to solving finite-dimensional dynamical sys- tems.
文摘The two-dimensional spreading under gravity of a thin fluid film with suction (fluid leak-off) or blowing (fluid injection) at the base is considered. The thin fluid film approximation is imposed. The height of the thin film satisfies a nonlinear diffusion equation with a source/sink term. The Lie point symmetries of the nonlinear diffusion equation are derived and exist, which provided the fluid velocity at the base, <em>v<sub>n</sub></em> satisfies a first order linear partial differential equation. The general form has algebraic time dependence while a special case has exponential time dependence. The solution in which <em>v<sub>n</sub></em> is proportional to the height of the thin film is studied. The width of the base always increases with time even for suction while the height decreases with time for sufficiently weak blowing. The streamlines of the fluid flow inside the thin film are plotted by first solving a cubic equation. For sufficiently weak blowing there is a dividing streamline, emanating from the stagnation point on the centre line which separates the fluid flow into two regions, a lower region consisting of rising fluid and dominated by fluid injection at the base and an upper region consisting of descending fluid and dominated by spreading due to gravity. For sufficiently strong blowing the lower region expands to completely fill the whole thin film.
基金the National Natural Science Foundation of China (Nos.10471013 10771024)
文摘This paper studies coupled nonlinear diffusion equations with more general nonlinearities, subject to homogeneous Neumann boundary conditions. The necessary and sufficient conditions are obtained for the existence of generalized solutions of the system, which extend the known results for nonlinear diffusion systems with more special nonlinearities.
基金supported in part by NSF grants DMS0604235 and DMS0906440the Research Fund of Indiana University.
文摘The incompatibilities between the initial and boundary data will cause singularities at the time-space corners,which in turn adversely affect the accuracy of the numerical schemes used to compute the solutions.We study the corner singularity issue for nonlinear evolution equations in 1D,and propose two remedy procedures that effectively recover much of the accuracy of the numerical scheme in use.Applications of the remedy procedures to the 1D viscous Burgers equation,and to the 1D nonlinear reaction-diffusion equation are presented.The remedy procedures are applicable to other nonlinear diffusion equations as well.
文摘In this paper,we apply Ma’s variation of parameters method(VPM)for solving Fisher’s equations.The suggested algorithm proved to be very efficient and finds the solution without any discretization,linearization,perturbation or restrictive assumptions.Numerical results reveal the complete reliability of the proposed VPM.