期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
裂纹加筋和缺口加筋对钢加筋板极限强度的影响
1
作者 Musa Bahmani Fattaneh Morshedsolouk Mohammad Reza Khedmati 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期460-469,共10页
This paper numerically evaluates the effect of the crack position on the ultimate strength of stiffened panels.Imperfections such as notches and cracks in aged marine stiffened panels can reduce their ultimate strengt... This paper numerically evaluates the effect of the crack position on the ultimate strength of stiffened panels.Imperfections such as notches and cracks in aged marine stiffened panels can reduce their ultimate strength.To investigate the effect of crack length and position,a series of nonlinear finite element analyses were carried out and two cases were considered,i.e.,case 1 with thin stiffeners and case 2 with thick stiffeners.In both cases,the stiffeners have the same cross-section area.To have a basis for comparison,the intact panels were modeled as well.The cracks and notches were in the longitudinal and transverse direction and were assumed to be in the middle part of the panel.The cracks and notches were assumed to be through the thickness and there is neither crack propagation nor contact between crack faces.Based on the numerical results,longitudinal cracks affect the behavior of the stiffened panels in the postbuckling region.When the stiffeners are thinner,they buckle first and provide no reserved strength after plate buckling.Thus,cracks in the stiffeners do not affect the ultimate strength in the case of the thinner stiffeners.Generally,when stiffeners are thicker,they affect the postbuckling behavior more.In that case,cracks in the stiffeners affect the buckling and failure modes of the stiffened panels.The effect of notch was also studied.In contrast to the longitudinal crack in stiffeners,a notch in the stiffeners reduces the ultimate strength of the stiffened panel for both slender and thick stiffeners. 展开更多
关键词 Stiffened panels CRACK NOTCH Ultimate strength BUCKLING nonlinear finite element method
下载PDF
Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction 被引量:3
2
作者 Djillali Amar Bouzid Subhamoy Bhattacharya Lalahoum Otsmane 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期333-346,共14页
A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using... A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using this model to accurately estimate the natural frequency of these slender structures, as a function of the interaction of the foundations with the subsoil. After a brief introduction to the wind power energy as a reliable alternative in comparison to fossil fuel, the paper focuses on concept of natural frequency as a primary indicator in designing the foundations of OWTs. Then the range of natural frequencies is provided for a safe design purpose. Next, an analytical expression of an OWT natural frequency is presented as a function of soil-monopile interaction through monopile head springs characterized by lateral stiffness KL, rotational stiffness KRand cross-coupling stiffness KLRof which the differences are discussed. The nonlinear pseudo three-dimensional finite element vertical slices model has been used to analyze the lateral behaviors of monopiles supporting the OWTs of different wind farm sites considered. Through the monopiles head movements(displacements and rotations), the values of KL, KRand KLRwere obtained and substituted in the analytical expression of natural frequency for comparison. The comparison results between computed and measured natural frequencies showed an excellent agreement for most cases. This confirms the convenience of the finite element model used for the accurate estimation of the monopile head stiffness. 展开更多
关键词 nonlinear finite element analysis Vertical slices model Monopiles under horizontal loading Natural frequency Monopile head stiffness Offshore wind turbines(OWTs)
下载PDF
Nonlinear Numerical Analysis of Vortex-Induced Vibration of A Three-Dimensional Deepwater Steep Wave Riser with Large Deformation Features 被引量:1
3
作者 CHENG Yong SONG Fu-kai LI Ming-xin 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期601-613,共13页
The cross-flow(CF)vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to uniform or shear flow loads is investigated numerically.The model is based on a three-dimensional(3D)nonlinear elastic ro... The cross-flow(CF)vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to uniform or shear flow loads is investigated numerically.The model is based on a three-dimensional(3D)nonlinear elastic rod theory coupled with a wake oscillator model.In this numerical simulation,the nonlinear motion equations of the riser with large deformation features are established in a global coordinate system to avoid the transformation between global and local coordinate systems,and are discretized with the time-domain finite element method(FEM).A wakeoscillator model is employed to study the vortex shedding,and the lift force generated by the wake flow is described in a van der Pol equation.A Newmark-βiterative scheme is used to solve their coupling equation for the VIV response of the SWR.The developed model is validated against the existing experimental results for the VIV response of the top-tension riser(TTR).Then,the numerical simulations are executed to determine VIV characteristics of the SWR.The effects of both flow velocity and the spanwise length of the flow field on the drag coefficient in the inline(IL)direction and the lift coefficient in the CF direction are investigated systematically.The results indicate that compared with TTR,the low frequency and multi-modal vibration are the main components of the SWR due to the large deformation and flexible characteristics.For shear flow,the multi-frequency resonance dominates the VIV response of the SWR,especially at the hang-off segment. 展开更多
关键词 steep wave riser vortex-induced vibration time domain simulation nonlinear finite element wake oscillator
下载PDF
Geometric nonlinear dynamic analysis of curved beams using curved beam element 被引量:3
4
作者 Ke-Qi Pan Jin-Yang Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期1023-1033,共11页
Instead of using the previous straight beam element to approximate the curved beam,in this paper,a curvilinear coordinate is employed to describe the deformations,and a new curved beam element is proposed to model the... Instead of using the previous straight beam element to approximate the curved beam,in this paper,a curvilinear coordinate is employed to describe the deformations,and a new curved beam element is proposed to model the curved beam.Based on exact nonlinear strain-displacement relation,virtual work principle is used to derive dynamic equations for a rotating curved beam,with the effects of axial extensibility,shear deformation and rotary inertia taken into account.The constant matrices are solved numerically utilizing the Gauss quadrature integration method.Newmark and Newton-Raphson iteration methods are adopted to solve the differential equations of the rigid-flexible coupling system.The present results are compared with those obtained by commercial programs to validate the present finite method.In order to further illustrate the convergence and efficiency characteristics of the present modeling and computation formulation,comparison of the results of the present formulation with those of the ADAMS software are made.Furthermore,the present results obtained from linear formulation are compared with those from nonlinear formulation,and the special dynamic characteristics of the curved beam are concluded by comparison with those of the straight beam. 展开更多
关键词 Curved beam element. Geometric nonlinear formulation Rigid-flexible coupling
下载PDF
A new beam element for analyzing geometrical and physical nonlinearity 被引量:3
5
作者 Xiao-Feng Wang Qing-Shan Yang Qi-Lin Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第4期605-615,共11页
Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an inter... Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures. 展开更多
关键词 Spatial beams Thin-walled section Beam element Geometrical and physical nonlinearity FEM
下载PDF
Full-range nonlinear analysis of fatigue behaviors of reinforced concrete structures by finite element method 被引量:1
6
作者 Song Yupu Zhao Shunbo Wang Ruimin and Li Shuyao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1994年第1期143-154,共12页
The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced conc... The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model. 展开更多
关键词 Reinforced concrete structures fatigue behavior full-range nonlinear analysis finite element method
下载PDF
PRINCIPAL COMPONENT DECOMPOSITION BASED FINITE ELEMENT MODEL UPDATING FOR STRAIN-RATE-DEPENDENCE NONLINEAR DYNAMIC PROBLEMS 被引量:1
7
作者 GUO Qintao ZHANG Lingmi TAO Zheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期70-74,共5页
Thin wail component is utilized to absorb impact energy of a structure. However, the dynamic behavior of such thin-walled structure is highly non-linear with material, geometry and boundary non-linearity. A model upda... Thin wail component is utilized to absorb impact energy of a structure. However, the dynamic behavior of such thin-walled structure is highly non-linear with material, geometry and boundary non-linearity. A model updating and validation procedure is proposed to build accurate finite element model of a frame structure with a non-linear thin-walled component for dynamic analysis. Design of experiments (DOE) and principal component decomposition (PCD) approach are applied to extract dynamic feature from nonlinear impact response for correlation of impact test result and FE model of the non-linear structure. A strain-rate-dependent non-linear model updating method is then developed to build accurate FE model of the structure. Computer simulation and a real frame structure with a highly non-linear thin-walled component are employed to demonstrate the feasibility and effectiveness of the proposed approach. 展开更多
关键词 Strain-rate-dependent Finite element model updating nonlinear dynamics Response surface
下载PDF
Analytical study of performance evaluation for seismic retrofitting of reinforced concrete building using 3D dynamic nonlinear finite element analysis
8
作者 Yuichi Sato Shinichi Kajihara Yoshio Kaneko 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期291-302,共12页
This paper presents three-dimensional finite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls... This paper presents three-dimensional finite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls of the building acted as a seismic resistant element although their contributions were neglected in the design. Hence, the entire structure of a typical frame was modeled and static and dynamic nonlinear analyses were conducted to evaluate the contributions of the brick walls. However, the results of the analyses were considerably overestimated due to coarse mesh discretizations, which were unavoidable due to limited computer resources. This study corrects the overestimations by modifying (1) the tensile strengths and (2) shear stiffness reduction factors of concrete and brick. The results indicate that brick walls improve frame strength although shear failures are caused in columns shortened by spandrel walls. Then, the effectiveness of three types of seismic retrofits is evaluated. The maximum drift of the first floor is reduced by 89.3%, 94.8%, and 27.5% by Steel-confined, FuI1-RC, and Full-brick models, respectively. Finally, feasibility analyses of models with soils were conducted. The analyses indicated that the soils elongate the natural period of building models although no significant differences were observed. 展开更多
关键词 reinforced concrete 1999 Taiwan Chi-Chi earthquake nonlinear finite element analysis seismic retrofit brick wall
下载PDF
Nonlinear Finite Element Analysis of Steel Fiber Reinforced Concrete Deep Beams
9
作者 XU Lihua CHI Yin +1 位作者 SU Jie XIA Dongtao 《Wuhan University Journal of Natural Sciences》 CAS 2008年第2期201-206,共6页
By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In... By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In the simulation process, the ANSYS parametric design language (APDL) was used to set up the finite element model; the model of bond stress-slip relationship between steel bar and concrete was established. The nonlinear FEA results and test results demonstrated that the steel fiber can not only significantly improve the cracking load and ultimate bearing capacity of the concrete but also repress the development of the cracks. Meanwhile, good agreement was found between the experimental data and FEA results, if the unit type, the parameter model and the failure criterion are selected reasonably. 展开更多
关键词 steel fiber reinforced concrete deep beam nonlinear finite element bond stress-slip relationship
下载PDF
A NONLINEAR GALERKIN MIXED ELEMENT METHOD AND A POSTERIORI ERROR ESTIMATOR FOR THE STATIONARY NAVIER-STOKES EQUATIONS
10
作者 罗振东 朱江 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第10期1194-1206,共13页
A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution... A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution are first discussed, and then a posteriori error estimator based on the NGME method is derived. 展开更多
关键词 Navier-Stokes equation nonlinear Galerkin mixed element method error estimate posteriori error estimator
下载PDF
A NONLINEAR GALERKIN/PETROV-LEAST SQUARES MIXED ELEMENT METHOD FOR THE STATIONARY NAVIER-STOKES EQUATIONS
11
作者 罗振东 朱江 王会军 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第7期783-793,共11页
A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to th... A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu*lka-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is proved in the case of sufficient viscosity (or small data). 展开更多
关键词 Navier-Stokes equation nonlinear Galerkin mixed element method Petrov-least squares method error estimate
下载PDF
NONLINEAR GALERKIN MIXED ELEMENT METHODS FOR STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS
12
作者 罗振东 毛允魁 朱江 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第12期1697-1707,共11页
A nonlinear Galerkin mixed element (NGME) method for the stationary incompressible magnetohydrodynamics equations is presented. And the existence and error estimates of the NGME solution are derived.
关键词 equation of magnetohydrodynamics nonlinear Galerkin mixed element method error estimation
下载PDF
Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD,material distribution and geometric morphology
13
作者 He Gong1,Linwei Lv1,Rui Zhang1,Dong Zhu3,Ming Zhang2(1.Department of Engineering Mechanics,Jilin University,Changchun 130025,P.R.China 2.Department of Health Technology and Informatics,The Hong Kong Polytechnic University,Hong Kong,China 3.Department of Orthopedic Surgery,No.1 Hospital,Jilin University,Changchun 130021,China) 《医用生物力学》 EI CAS CSCD 2009年第S1期66-66,共1页
Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of bette... Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically 展开更多
关键词 BMD Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD material distribution and geometric morphology FEA
下载PDF
Finite Element Method Based on Equivalent Magnetic Energy Method for Computation of 2D Nonlinear Eddy Current Field
14
作者 朱守军 邓康 屠关镇 《Advances in Manufacturing》 SCIE CAS 1997年第3期252-256,共5页
In this paper, the finite element method using vector potential in applications to 2D nonlinear eddy current field is discussed. The authors use the equivalent magnetic energy method to deal with magnetization curve o... In this paper, the finite element method using vector potential in applications to 2D nonlinear eddy current field is discussed. The authors use the equivalent magnetic energy method to deal with magnetization curve of ferromagnetic material,and present the formulation of 2D nonlinear eddy current field.With this method the authors analyze the eddy current field in an induction ladle furnace and the force distribution in the charge (molten metal),and plot the corresponding curves. 展开更多
关键词 eddy current field finite element method.nonlinear
下载PDF
INCREMENTAL ANALYSIS FOR NONLINEAR RUBBER-LIKE MATERIALS BY HYBRID STRESS FINITE ELEMENT
15
作者 范家齐 杨晓翔 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第6期529-537,共9页
In this paper, on the basis of the incremental Reissner variational principle.a nonlinear finite element analysis has been accomplished and a formulation of hybrid stress element has been presented for incompressible ... In this paper, on the basis of the incremental Reissner variational principle.a nonlinear finite element analysis has been accomplished and a formulation of hybrid stress element has been presented for incompressible Mooney rubber-like materials. The corrected terms of the non-equilibrium force and the incompressibility deviation are considered in the formulation. The computed values of numerical example agree very closely with the exact solution. 展开更多
关键词 INCREMENTAL ANALYSIS FOR nonlinear RUBBER-LIKE MATERIALS BY HYBRID STRESS FINITE ELEMENT
下载PDF
Numerical simulations of shake-table experiment for dynamic soil-pile-structure interaction in liquefi able soils 被引量:14
16
作者 Tang Liang Baydaa Hussain Maula +1 位作者 Ling Xianzhang Su Lei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第1期171-180,共10页
A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to... A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements. 展开更多
关键词 LIQUEFACTION pile pinning soil improvement pile deformation EARTHQUAKE nonlinear fi nite element method shake-table experiment
下载PDF
Characteristic Verification and Parameter Optimization of Airbags Cushion System for Airborne Vehicle 被引量:5
17
作者 WANG Hongyan HONG Huangjie +3 位作者 HAO Guixiang DENG Huaxia RUI Qiang LI Jianyang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期50-57,共8页
Abstract: The major methods to investigate the airbags cushion system are experimental method, thermodynamic method and finite element method (FEM). Airbags cushion systems are very complicated and very difficult t... Abstract: The major methods to investigate the airbags cushion system are experimental method, thermodynamic method and finite element method (FEM). Airbags cushion systems are very complicated and very difficult to be investigated thoroughly by such methods For experimental method, it is nearly impossible to completely analyze and optimize the cushion characteristics of airbags of airborne vehicle because of charge issue, safety concern and time constraint. Thermodynamic method fails to take the non-linear effects of large airbag deformation and varied contact conditions into consideration. For finite element method, the FE model is usually complicated and the calculation takes tens of hours of CPU time. As a result, the optimization of the design based on a nonlinear model is very difficult by traditional iterative approach method. In this paper, a model based on FEM and control volume method is proposed to simulate landing cushion process of airborne vehicle with airbags cushion system in order to analyze and optimize the parameters in airbags cushion system. At first, the performance of airbags cushion system model is verified experimentally. In airdrop test, accelerometers are fixed in 4 test points distributed over engine mount, top, bottom and side armor plate of hull to obtain acceleration curves with time. The simulation results are obtained under the same conditions of the airdrop test and the simulation results agree very well with the experimental results, which indicate the established model is valid for further optimization. To optimize the parameters of airbags, equivalent response model based on Latin Hypercube DOE and radial basis function is employed instead of the complex finite element model. Then the optimal results based on equivalent response model are obtained using simulated annealing algorithm. After optimization, the maximal acceleration of airborne vehicle landing reduces 19.83%, while the energy absorption by airbags increases 7.85%. The performance of the airbags cushion system thus is largely improved through optimization, which indicates the proposed method has the capability of solving the parameter optimization problem of airbags cushion system for airborne vehicle. 展开更多
关键词 airborne vehicle AIRBAG nonlinear finite element method VERIFICATION equivalent response model
下载PDF
ANALYSIS OF DAMAGE NEAR A CONDUCTING CRACK IN A PIEZOELECTRIC CERAMIC 被引量:6
18
作者 YangXinhua ChenChuanyao HuYuantai 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第2期147-154,共8页
The finite element formulation for analyzing static damage near a conducting crack in a thin piezoelectric plate is established from the virtual work principle of piezoelectricity.The damage fields under various mecha... The finite element formulation for analyzing static damage near a conducting crack in a thin piezoelectric plate is established from the virtual work principle of piezoelectricity.The damage fields under various mechanical and electrical loads are calculated carefully by using an effective iterative procedure.The numerical results show that all the damage fields around a crack tip are fan-shaped and the electric field applied has great influence on the mechanical damage, which is related to the piezoelectric properties. 展开更多
关键词 piezoelectric ceramic nonlinear finite element method conducting crack mechanical and electrical damage
下载PDF
The boundary conditions for simulations of a shake-table experiment on the seismic response of 3D slope 被引量:3
19
作者 Tang Liang Cong Shengyi +1 位作者 Ling Xianzhang Ju Nengpan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第1期23-32,共10页
Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slo... Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slope response, a validated three-dimensional (3D) nonlinear FE model is presented, and the numerical and experimental results are compared. For that purpose, the robust graphical user-interface "SlopeSAR", based on the open-source computational platform OpenSees, is employed, which simplifies the effort-intensive pre- and post-processing phases. The mesh resolution effect is also addressed. A parametric study is performed to evaluate the influence of boundary conditions on the FE model involving the boundary extent and three types of boundary conditions at the end faces. Generally, variations in the boundary extent produce inconsistent slope deformations. For the two end faces, fixing the y-direction displacement is not appropriate to simulate the shake-table experiment, in which the end walls are rigid and rough. In addition, the influence of the length of the 3D slope's top face and the width of the slope play an important role in the difference between two types of boundary conditions at the end faces (fixing the y-direction displacement and fixing the (y, z) direction displacement). Overall, this study highlights that the assessment of a comparison between a simulation and an experimental result should be performed with due consideration to the effect of the boundary conditions. 展开更多
关键词 boundary condition dynamic response soil slope nonlinear finite element analysis shake-table experimentearthquake
下载PDF
Study of a new-type of steel buckling-restrained brace 被引量:2
20
作者 Jiang Tao Dai Junwu +2 位作者 Yang Yongqiang Liu Yongbin Bai Wen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第1期239-256,共18页
The rectangle core plate of all-steel buckling-restrained braces(BRBs) usually exhibit obvious local buckling, due to the lack of longitudinal restraint from the encasing tube. To eliminate the undesirable effects, a ... The rectangle core plate of all-steel buckling-restrained braces(BRBs) usually exhibit obvious local buckling, due to the lack of longitudinal restraint from the encasing tube. To eliminate the undesirable effects, a novel steel BRB is proposed. In this new-type steel BRB, two T-shaped steels are adopted as the minor restraint elements to restrain the core plate instead of infilled concrete or mortar. Meanwhile, the ingot-iron material with low yielding strength and high elongation is applied to the steel core to study the mechanical properties of steel BRBs. To validate the theoretical requirements for the width-to-thickness ratio of the steel core and the thickness of angle steel, quasi-static tests of eight specimens were conducted. The tests focused on the energy dissipation capacity and failure modes of the proposed steel BRBs. Nonlinear finite element analysis was also carried out to validate the experimental results. Both the aforementioned results imply that appropriately designed steel BRBs can meet the performance requirements for BRB components. 展开更多
关键词 steel BRB T-shaped steel Ingot-iron energy dissipation capacity failure modes nonlinear fi nite element analysis
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部