A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtaine...A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtained. With the assistance of the nonlinear mirror, we demonstrate that the spatial resolution of the sensor is improved from 3 m to 1 m, and the temperature accuracy is improved from ±0.6℃ to ±0.2℃. The theoretical analysis and the experimental data are in good agreement.展开更多
We report on a wide-band and stable mode-locked all-polarization-maintaining fiber laser configuration using a nonlinear optical loop mirror. The central wavelength of the laser is 1080.14nm and the 3dB bandwidth is 2...We report on a wide-band and stable mode-locked all-polarization-maintaining fiber laser configuration using a nonlinear optical loop mirror. The central wavelength of the laser is 1080.14nm and the 3dB bandwidth is 20.29nm. The repetition rate of the pulse is 3.28 MHz and the pulse width is 848ps. By tuning the pump power, which is centered at 980nrn, from 300mW to 380mW, we obtain a linearly changed output power from 6row to 7.12roW. The all-polarization-mMntaining fiber configuration is fundamental to the stability of the output power.展开更多
The time delay(TD) of femtoseeond pulses is studied for the first time, which generated from the nonlinear optical loop mirror composed of dispersion decreasing fiber(DDF-NOLM). The results show that the higher-or...The time delay(TD) of femtoseeond pulses is studied for the first time, which generated from the nonlinear optical loop mirror composed of dispersion decreasing fiber(DDF-NOLM). The results show that the higher-order dispersion and high order nonlinearities such as Raman frequency shift play a key role in producing TD, and that the time delay ean be suppressed by the third-order dispersion(TOD) in DDF-NOLM. The mechanism of the time delay suppression is also discussed in detail.展开更多
The investigation of the nonlinear dynamics of a semiconductor laser based on nonlinear optical loop mirror (NOLM) feedback using Ge doped optical fiber was carried out experimentally. Animations of compilations of th...The investigation of the nonlinear dynamics of a semiconductor laser based on nonlinear optical loop mirror (NOLM) feedback using Ge doped optical fiber was carried out experimentally. Animations of compilations of the output power as a function of time series and phase plane with effects of optical feedback level, carrier current and modulation signal strength are demonstrated as a tool to give insight into the laser dynamics. Different dynamic states, including 2×, 4× multiplication and quasi-periodic and periodic frequency-locked pulsing states extended to chaotic behaviour were observed by varying the parameters of modulated frequency and optical feedback strength. The frequency-locked pulsing states were observed to exhibit a harmonic frequency-locking phenomenon and the pulsing frequency is locked to a harmonic nonlinearity in loop instead of the modulated frequency.展开更多
This paper reports that the nonlinear refractive index of a novel organic optical storage film doped azodiphenylamine polymer is measured by using the Z-scan technique. The nonlinear refractive index up to 3.7× 1...This paper reports that the nonlinear refractive index of a novel organic optical storage film doped azodiphenylamine polymer is measured by using the Z-scan technique. The nonlinear refractive index up to 3.7× 10^-6 cm^2/W induced by thermo-optical effect is obtained. It indicates that the sample has excellent optical non- linear properties. The physical mechanism of the great nonlinear optical effect is analysed and the optical conjugate characteristic is also discussed with degenerate four-wave-mixing. The phase conjugate wave diffracted from the formative refractive index grating in the sample is acquired and its equivalent reflectivity reaches about 22%. On this basis, the reflective wave phase-conjugated mirror system was designed, and the image aberration experienced in propagation in the storage experiment is corrected by using the system.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.60377021partially supported by Program for New Century Excellent Talents in University under Grant No. NCET-07-0152Sichuan Scientific Funds for Young Researchers under Grant No. 08ZQ026-012.
文摘A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtained. With the assistance of the nonlinear mirror, we demonstrate that the spatial resolution of the sensor is improved from 3 m to 1 m, and the temperature accuracy is improved from ±0.6℃ to ±0.2℃. The theoretical analysis and the experimental data are in good agreement.
文摘We report on a wide-band and stable mode-locked all-polarization-maintaining fiber laser configuration using a nonlinear optical loop mirror. The central wavelength of the laser is 1080.14nm and the 3dB bandwidth is 20.29nm. The repetition rate of the pulse is 3.28 MHz and the pulse width is 848ps. By tuning the pump power, which is centered at 980nrn, from 300mW to 380mW, we obtain a linearly changed output power from 6row to 7.12roW. The all-polarization-mMntaining fiber configuration is fundamental to the stability of the output power.
文摘The time delay(TD) of femtoseeond pulses is studied for the first time, which generated from the nonlinear optical loop mirror composed of dispersion decreasing fiber(DDF-NOLM). The results show that the higher-order dispersion and high order nonlinearities such as Raman frequency shift play a key role in producing TD, and that the time delay ean be suppressed by the third-order dispersion(TOD) in DDF-NOLM. The mechanism of the time delay suppression is also discussed in detail.
文摘The investigation of the nonlinear dynamics of a semiconductor laser based on nonlinear optical loop mirror (NOLM) feedback using Ge doped optical fiber was carried out experimentally. Animations of compilations of the output power as a function of time series and phase plane with effects of optical feedback level, carrier current and modulation signal strength are demonstrated as a tool to give insight into the laser dynamics. Different dynamic states, including 2×, 4× multiplication and quasi-periodic and periodic frequency-locked pulsing states extended to chaotic behaviour were observed by varying the parameters of modulated frequency and optical feedback strength. The frequency-locked pulsing states were observed to exhibit a harmonic frequency-locking phenomenon and the pulsing frequency is locked to a harmonic nonlinearity in loop instead of the modulated frequency.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 19834030 and 50533010).
文摘This paper reports that the nonlinear refractive index of a novel organic optical storage film doped azodiphenylamine polymer is measured by using the Z-scan technique. The nonlinear refractive index up to 3.7× 10^-6 cm^2/W induced by thermo-optical effect is obtained. It indicates that the sample has excellent optical non- linear properties. The physical mechanism of the great nonlinear optical effect is analysed and the optical conjugate characteristic is also discussed with degenerate four-wave-mixing. The phase conjugate wave diffracted from the formative refractive index grating in the sample is acquired and its equivalent reflectivity reaches about 22%. On this basis, the reflective wave phase-conjugated mirror system was designed, and the image aberration experienced in propagation in the storage experiment is corrected by using the system.
基金National Basic Research Program of China(Grant NO.2003CB314906)Foundationfor Key Program of Ministry of Education,China(Grant No.104046)Foundation from the Education Commission of Beijing,China(Grant NO.XK100130437)