In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equa...In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind f(t) = {a^t K(t, s)x(s)ds a ≤ t ≤ b or solve the Volterra integral equation of the second kind x(t) =f(t)+{a^t K(t,s)x(s)ds a ≤ t ≤ b is equivalent to solving a generalized moment problem of the form un = {a^b gn(s)x(s)ds n = 0,1,2… This shall apply for to find the solution of an integrodifferential equation of the form x'(t) = f(t) + {a^t K(t,s)x(s)ds for a ≤ t ≤ b and x(a) = a0 Also considering the nonlinear integral equation: f(x)= {fa^x y(x-t)y(t)dt This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques ofgeneralized moment problem.展开更多
In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm i...In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.展开更多
We propose a multiscale projection method for the numerical solution of the irtatively regularized Gauss-Newton method of nonlinear integral equations.An a posteriori rule is suggested to choose the stopping index of ...We propose a multiscale projection method for the numerical solution of the irtatively regularized Gauss-Newton method of nonlinear integral equations.An a posteriori rule is suggested to choose the stopping index of iteration and the rates of convergence are also derived under the Lipschitz condition.Numerical results are presented to demonstrate the efficiency and accuracy of the proposed method.展开更多
The existence of periodic solution to nonlinear integral equations with infinite delay is studied in this paper. We prove that the g- uniform bounded and g- uniform ultimate bounded solutions implies the existence of ...The existence of periodic solution to nonlinear integral equations with infinite delay is studied in this paper. We prove that the g- uniform bounded and g- uniform ultimate bounded solutions implies the existence of periodic solutions using Schauder-Tychonov’s fixed point theorem in the phase space (Cg,|·|g).展开更多
In this paper, a Darbao type random fixed point theorem for a system of weak continuous random operators with random domain is first proved. When, by using the theorem, some existence criteria of random solutions for ...In this paper, a Darbao type random fixed point theorem for a system of weak continuous random operators with random domain is first proved. When, by using the theorem, some existence criteria of random solutions for a systems of nonlinear random Volterra integral equations relative to the weak topology in Banach spaces are given. As applications, some existence theorems of weak random solutions for the random Cauchy problem of a system of nonlinear random differential equations are obtained, as well as the existence of extremal random solutions and random comparison results for these systems of random equations relative to weak topology in Banach spaces. The corresponding results of Szep, Mitchell-Smith, Cramer-Lakshmikantham, Lakshmikantham-Leela and Ding are improved and generalized by these theorems.展开更多
This paper discusses the numerical solutions for the nonlinear Fredholm integral equations of thesecond kind. On the basis of the Galerkin method, the author establishes a Galerkin algorithm, a Wavelet-Galerkinalgorit...This paper discusses the numerical solutions for the nonlinear Fredholm integral equations of thesecond kind. On the basis of the Galerkin method, the author establishes a Galerkin algorithm, a Wavelet-Galerkinalgorithm and their corresponding iterated correction schemes for this kind of equations.The superconvergemceof the numerical solutions of these two algorithms is proved. Not only are the results concerning the Hammersteinintegral equations generalized to nonlinear Fredilolm equations of the second kind, but also more precise resultsare obtained by tising the wavelet method.展开更多
In this paper, the existence of solutions is studied for nonlinear impulsive Volterra integral equations with infinite moments of impulse effect on the half line R^+ in Banach spaces.By the use of a new comparison res...In this paper, the existence of solutions is studied for nonlinear impulsive Volterra integral equations with infinite moments of impulse effect on the half line R^+ in Banach spaces.By the use of a new comparison result and recurrence method, the new existence theorems are achieved under a weaker compactness-type condition, which generalize and improve the related results for this class of equations with finite moments of impulse effect on finite interval and infinite moments of impulse effect on infinite interval.展开更多
This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterization...This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterizations of functions in Besom spaces B(?)(0,1) with 0<σ<∞ and (1+σ)-1<γ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.展开更多
A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced ...A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain.展开更多
The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was c...The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was chosen. This can be used in further development of the theory of the integral equations in non-standard problems, classes in the numerical solution of third kind Volterra-Stieltjes integral equations, and when solving specific problems that lead to equations of the third kind.展开更多
The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct m...The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.展开更多
In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a sy...In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a system of nonlinear Volterra integral equations. Runge-Kutta method (RKM) and Bolck by block method (BBM) are used to solve the system of nonlinear Volterra integral equations of the second kind (SNVIEs) with continuous kernel. The error in each case is calculated.展开更多
In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of...In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.展开更多
The existence and representation of the exact solution are given for a nonlinear functional equation in the reproducing kernel space. For a numerical computation, we present a large-range convergence iterative method ...The existence and representation of the exact solution are given for a nonlinear functional equation in the reproducing kernel space. For a numerical computation, we present a large-range convergence iterative method for solving the nonlinear functional equation. In the iterative method, the convergent condition is simple and the convergence is irrespective to the choice of the initial function. It is worthy to note that the presented method can be generalized to solve other nonlinear operator equations.展开更多
Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial diff...Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells .展开更多
The nonlinear singular perturbation problem is solved numerically on nonequidistant meshes which are dense in the boundary layers. The method presented is based on the numerical solution of integral equations [1]. The...The nonlinear singular perturbation problem is solved numerically on nonequidistant meshes which are dense in the boundary layers. The method presented is based on the numerical solution of integral equations [1]. The fourth order uniform accuracy of the scheme is proved. A numerical experiment demonstrates the effectiveness of the method.展开更多
The numerical solutions to the nonlinear integral equations of Hammerstein-type y(t) = f(t) + integral(0)(1)k(t, s)g(s, y(s))ds, t is an element of [0,1] are investigated. A degenerate kernel scheme basing on ID-wavel...The numerical solutions to the nonlinear integral equations of Hammerstein-type y(t) = f(t) + integral(0)(1)k(t, s)g(s, y(s))ds, t is an element of [0,1] are investigated. A degenerate kernel scheme basing on ID-wavelets combined with a new collocation-type method is presented. The Daubechies interval wavelets and their main properties are briefly mentioned. The rate of approximation solution converging to the exact solution is given. Finally we also give two numerical examples.展开更多
Some Fixed point theorems for mappings of the type - A + T are established, where P is a cone in a Hilbert space, A: P --> 2(P) is an accretive mappings and T: P --> P is a nonexpansive mappings. In application,...Some Fixed point theorems for mappings of the type - A + T are established, where P is a cone in a Hilbert space, A: P --> 2(P) is an accretive mappings and T: P --> P is a nonexpansive mappings. In application, the results presented in the paper are used to study the existence problem of solutions far a class of nonlinear integral equations in L-2 (Omega).展开更多
In this paper, by applying Avery-Henderson fixed point theorem in a cone, we establish some new existence results of two positive periodic solutions for a type of nonlinear integral equations with variant delay.
While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approxima...While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approximate solution. In this paper,we analyse the Nystrom solution of one-dimensional nonlinear Volterra integral equation of the second kind and show that approkimate solution admits an asymptotic error expansion in even powers of the step-size h, beginning with a term in h2. So that the Richardson's extrapolation can be done. This will increase the accuracy of numerical solution greatly.展开更多
文摘In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind f(t) = {a^t K(t, s)x(s)ds a ≤ t ≤ b or solve the Volterra integral equation of the second kind x(t) =f(t)+{a^t K(t,s)x(s)ds a ≤ t ≤ b is equivalent to solving a generalized moment problem of the form un = {a^b gn(s)x(s)ds n = 0,1,2… This shall apply for to find the solution of an integrodifferential equation of the form x'(t) = f(t) + {a^t K(t,s)x(s)ds for a ≤ t ≤ b and x(a) = a0 Also considering the nonlinear integral equation: f(x)= {fa^x y(x-t)y(t)dt This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques ofgeneralized moment problem.
文摘In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.
基金Supported in part by the Natural Science Foundation of China under grants 11761010 and 61863001.
文摘We propose a multiscale projection method for the numerical solution of the irtatively regularized Gauss-Newton method of nonlinear integral equations.An a posteriori rule is suggested to choose the stopping index of iteration and the rates of convergence are also derived under the Lipschitz condition.Numerical results are presented to demonstrate the efficiency and accuracy of the proposed method.
基金supported by the National Natural Sciences Foundations of China (10771107)
文摘The existence of periodic solution to nonlinear integral equations with infinite delay is studied in this paper. We prove that the g- uniform bounded and g- uniform ultimate bounded solutions implies the existence of periodic solutions using Schauder-Tychonov’s fixed point theorem in the phase space (Cg,|·|g).
文摘In this paper, a Darbao type random fixed point theorem for a system of weak continuous random operators with random domain is first proved. When, by using the theorem, some existence criteria of random solutions for a systems of nonlinear random Volterra integral equations relative to the weak topology in Banach spaces are given. As applications, some existence theorems of weak random solutions for the random Cauchy problem of a system of nonlinear random differential equations are obtained, as well as the existence of extremal random solutions and random comparison results for these systems of random equations relative to weak topology in Banach spaces. The corresponding results of Szep, Mitchell-Smith, Cramer-Lakshmikantham, Lakshmikantham-Leela and Ding are improved and generalized by these theorems.
文摘This paper discusses the numerical solutions for the nonlinear Fredholm integral equations of thesecond kind. On the basis of the Galerkin method, the author establishes a Galerkin algorithm, a Wavelet-Galerkinalgorithm and their corresponding iterated correction schemes for this kind of equations.The superconvergemceof the numerical solutions of these two algorithms is proved. Not only are the results concerning the Hammersteinintegral equations generalized to nonlinear Fredilolm equations of the second kind, but also more precise resultsare obtained by tising the wavelet method.
文摘In this paper, the existence of solutions is studied for nonlinear impulsive Volterra integral equations with infinite moments of impulse effect on the half line R^+ in Banach spaces.By the use of a new comparison result and recurrence method, the new existence theorems are achieved under a weaker compactness-type condition, which generalize and improve the related results for this class of equations with finite moments of impulse effect on finite interval and infinite moments of impulse effect on infinite interval.
基金The work of the author has been supported by the Deutache Forschungsgemeinschaft(DFG) under Grant Ho 1846/1-1
文摘This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterizations of functions in Besom spaces B(?)(0,1) with 0<σ<∞ and (1+σ)-1<γ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.
文摘A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain.
文摘The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was chosen. This can be used in further development of the theory of the integral equations in non-standard problems, classes in the numerical solution of third kind Volterra-Stieltjes integral equations, and when solving specific problems that lead to equations of the third kind.
文摘The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.
文摘In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a system of nonlinear Volterra integral equations. Runge-Kutta method (RKM) and Bolck by block method (BBM) are used to solve the system of nonlinear Volterra integral equations of the second kind (SNVIEs) with continuous kernel. The error in each case is calculated.
文摘In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.
基金Sponsored by the Education Department Science and Technology Foundation of Heilongjiang Province (Grant No.11531324)
文摘The existence and representation of the exact solution are given for a nonlinear functional equation in the reproducing kernel space. For a numerical computation, we present a large-range convergence iterative method for solving the nonlinear functional equation. In the iterative method, the convergent condition is simple and the convergence is irrespective to the choice of the initial function. It is worthy to note that the presented method can be generalized to solve other nonlinear operator equations.
文摘Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells .
文摘The nonlinear singular perturbation problem is solved numerically on nonequidistant meshes which are dense in the boundary layers. The method presented is based on the numerical solution of integral equations [1]. The fourth order uniform accuracy of the scheme is proved. A numerical experiment demonstrates the effectiveness of the method.
文摘The numerical solutions to the nonlinear integral equations of Hammerstein-type y(t) = f(t) + integral(0)(1)k(t, s)g(s, y(s))ds, t is an element of [0,1] are investigated. A degenerate kernel scheme basing on ID-wavelets combined with a new collocation-type method is presented. The Daubechies interval wavelets and their main properties are briefly mentioned. The rate of approximation solution converging to the exact solution is given. Finally we also give two numerical examples.
基金theMajorScientificResearchFundoftheEducationalCommitteeofSichuanProvince (No .[1 998]1 62‘OnNonlinearEquationResearchofAccret
文摘Some Fixed point theorems for mappings of the type - A + T are established, where P is a cone in a Hilbert space, A: P --> 2(P) is an accretive mappings and T: P --> P is a nonexpansive mappings. In application, the results presented in the paper are used to study the existence problem of solutions far a class of nonlinear integral equations in L-2 (Omega).
文摘In this paper, by applying Avery-Henderson fixed point theorem in a cone, we establish some new existence results of two positive periodic solutions for a type of nonlinear integral equations with variant delay.
文摘While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approximate solution. In this paper,we analyse the Nystrom solution of one-dimensional nonlinear Volterra integral equation of the second kind and show that approkimate solution admits an asymptotic error expansion in even powers of the step-size h, beginning with a term in h2. So that the Richardson's extrapolation can be done. This will increase the accuracy of numerical solution greatly.