For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling w...The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling wave solutions of this nonlinear conformable model are constructed by utilizing two powerful analytical approaches,namely,the modified auxiliary equation method and the Sardar sub-equation method.Many novel soliton solutions are extracted using these methods.Furthermore,3D surface graphs,contour plots and parametric graphs are drawn to show dynamical behavior of some obtained solutions with the aid of symbolic software such as Mathematica.The constructed solutions will help to understand the dynamical framework of nonlinear Bogoyavlenskii equations in the related physical phenomena.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constrain...In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constraint f_(R)^N u^2dx=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.展开更多
This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the ...This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.展开更多
We make a quantitative study on the soliton interactions in the nonlinear Schro¨dinger equation(NLSE) and its variable–coefficient(vc) counterpart. For the regular two-soliton and double-pole solutions of the NL...We make a quantitative study on the soliton interactions in the nonlinear Schro¨dinger equation(NLSE) and its variable–coefficient(vc) counterpart. For the regular two-soliton and double-pole solutions of the NLSE, we employ the asymptotic analysis method to obtain the expressions of asymptotic solitons, and analyze the interaction properties based on the soliton physical quantities(especially the soliton accelerations and interaction forces);whereas for the bounded two-soliton solution, we numerically calculate the soliton center positions and accelerations, and discuss the soliton interaction scenarios in three typical bounded cases. Via some variable transformations, we also obtain the inhomogeneous regular two-soliton and double-pole solutions for the vcNLSE with an integrable condition. Based on the expressions of asymptotic solitons, we quantitatively study the two-soliton interactions with some inhomogeneous dispersion profiles,particularly discuss the influence of the variable dispersion function f(t) on the soliton interaction dynamics.展开更多
We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(...We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(v<sub>0</sub>))) - div(a(x,Dv) + F(v)) = f where the right hand side belongs to L<sup>1</sup>. The kernel k belongs to the large class of PC kernels. In particular, the case of fractional time derivatives of order α ∈ (0,1) is included. Assuming b nondecreasing with L<sup>1</sup>-data, we prove existence in the framework of entropy solutions. The approach adopted for the proof is based on a several step approximation method and by using a result in the case of a strictly increasing b.展开更多
This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surface...This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine, and cosine. We are building up the general solutions bit for bit according to constant terms that contain the formula of the desired limit cycle, and differentiating them. In Part One, we used only formulas for closed curves where all parts of the formula were of the same degree. In order to use many other formulas for closed curves, the method in this paper is to introduce an additional variable, and we will get an additional ODE. We will choose the part of the formula with the highest degree and multiply the other parts with an extra variable, so that all parts of the formula have the same degree, creating a constant term containing this new formula. We will place it under the fraction line in the solutions, building up the rest of the solutions according to this constant term and differentiating. Keeping this extra variable constant, we will achieve almost the desired result. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions and some surfaces having attractor behavior, where not all parts of the formulas are the same degree. The pictures show the result.展开更多
Necessary and sufficient conditions are derived for some matrix equations that have a common least-squares solution.A general expression is provided when certain resolvable conditions are satisfied.This research exten...Necessary and sufficient conditions are derived for some matrix equations that have a common least-squares solution.A general expression is provided when certain resolvable conditions are satisfied.This research extends existing work in the literature.展开更多
This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obt...This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise.展开更多
In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works conc...There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.展开更多
In this paper, it is discussed the model of a kind of nonlinear differential, equation d s d t=1-s-x 1s 0δQ 2(m 1s 0sk 1+s 0s-k) d x 1 d t=x 1Q(m 1s 0sk 1+s 0s-k)-x 1-x 2m 2x 1/Qk 2+x 1/Q...In this paper, it is discussed the model of a kind of nonlinear differential, equation d s d t=1-s-x 1s 0δQ 2(m 1s 0sk 1+s 0s-k) d x 1 d t=x 1Q(m 1s 0sk 1+s 0s-k)-x 1-x 2m 2x 1/Qk 2+x 1/Q d x 2 d t=x 2Q m 2x 1/Qk 2+x 1/Q-x 2.It is proved that the system is exist at least one stable periodic solution on under the following condition:m 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2】m 1δk 1(k 2+Q 2λ 2) 2.Furthermore, ifm 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2【m 1δk 1(k 2-Q 2λ 2) 2mold true them equilibrium point (s *,x * 1,x * 2)∈ set Ω is global asymptotic stable.展开更多
In this paper, the existence and uniqueness of the local generalized solution of the initial boundary value problem for a nonlinear hyperbolic equation are proved by the contraction mapping principle and the sufficien...In this paper, the existence and uniqueness of the local generalized solution of the initial boundary value problem for a nonlinear hyperbolic equation are proved by the contraction mapping principle and the sufficient conditions of blow_up of the solution in finite time are given.展开更多
The purpose of this article is to establish the regularity of the weak solutions for the nonlinear biharmonic equation {△^2u + a(x)u = g(x, u)u∈ H^2(R^N), where the condition u∈ H^2(R^N) plays the role o...The purpose of this article is to establish the regularity of the weak solutions for the nonlinear biharmonic equation {△^2u + a(x)u = g(x, u)u∈ H^2(R^N), where the condition u∈ H^2(R^N) plays the role of a boundary value condition, and as well expresses explicitly that the differential equation is to be satisfied in the weak sense.展开更多
The approximate expressions of the travelling wave solutions for a class of nonlinear disturbed long-wave system are constructed using the generalized variational iteration method.
In this paper, the nonlinear internal inerntial gravity wave equation is derived by the analysis method of phase plane and is solved by integration method. The results showed that this nonlinear equation not only has ...In this paper, the nonlinear internal inerntial gravity wave equation is derived by the analysis method of phase plane and is solved by integration method. The results showed that this nonlinear equation not only has ordinary solitary wave solution but also has another extra-ordinary solutions, and the form of solution is related to stratification stability, wave velocity and direction of wave motion.展开更多
This paper presents a new and efficient approach for constructing exact solutions to nonlinear differential-difference equations (NLDDEs) and lattice equation. By using this method via symbolic computation system MA...This paper presents a new and efficient approach for constructing exact solutions to nonlinear differential-difference equations (NLDDEs) and lattice equation. By using this method via symbolic computation system MAPLE, we obtained abundant soliton-like and/or period-form solutions to the (2+1)-dimensional Toda equation. It seems that solitary wave solutions are merely special cases in one family. Furthermore, the method can also be applied to other nonlinear differential-difference equations.展开更多
Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equation...Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.展开更多
Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1...Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.展开更多
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
文摘The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling wave solutions of this nonlinear conformable model are constructed by utilizing two powerful analytical approaches,namely,the modified auxiliary equation method and the Sardar sub-equation method.Many novel soliton solutions are extracted using these methods.Furthermore,3D surface graphs,contour plots and parametric graphs are drawn to show dynamical behavior of some obtained solutions with the aid of symbolic software such as Mathematica.The constructed solutions will help to understand the dynamical framework of nonlinear Bogoyavlenskii equations in the related physical phenomena.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
基金supported by the NSFC(12271184)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J10001).
文摘In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constraint f_(R)^N u^2dx=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.
文摘This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.
基金Project supported by the Natural Science Foundation of Beijing Municipality (Grant No.1212007)the National Natural Science Foundation of China (Grant No.11705284)the Open Project Program of State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum (Grant No.PRP/DX-2211)。
文摘We make a quantitative study on the soliton interactions in the nonlinear Schro¨dinger equation(NLSE) and its variable–coefficient(vc) counterpart. For the regular two-soliton and double-pole solutions of the NLSE, we employ the asymptotic analysis method to obtain the expressions of asymptotic solitons, and analyze the interaction properties based on the soliton physical quantities(especially the soliton accelerations and interaction forces);whereas for the bounded two-soliton solution, we numerically calculate the soliton center positions and accelerations, and discuss the soliton interaction scenarios in three typical bounded cases. Via some variable transformations, we also obtain the inhomogeneous regular two-soliton and double-pole solutions for the vcNLSE with an integrable condition. Based on the expressions of asymptotic solitons, we quantitatively study the two-soliton interactions with some inhomogeneous dispersion profiles,particularly discuss the influence of the variable dispersion function f(t) on the soliton interaction dynamics.
文摘We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(v<sub>0</sub>))) - div(a(x,Dv) + F(v)) = f where the right hand side belongs to L<sup>1</sup>. The kernel k belongs to the large class of PC kernels. In particular, the case of fractional time derivatives of order α ∈ (0,1) is included. Assuming b nondecreasing with L<sup>1</sup>-data, we prove existence in the framework of entropy solutions. The approach adopted for the proof is based on a several step approximation method and by using a result in the case of a strictly increasing b.
文摘This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine, and cosine. We are building up the general solutions bit for bit according to constant terms that contain the formula of the desired limit cycle, and differentiating them. In Part One, we used only formulas for closed curves where all parts of the formula were of the same degree. In order to use many other formulas for closed curves, the method in this paper is to introduce an additional variable, and we will get an additional ODE. We will choose the part of the formula with the highest degree and multiply the other parts with an extra variable, so that all parts of the formula have the same degree, creating a constant term containing this new formula. We will place it under the fraction line in the solutions, building up the rest of the solutions according to this constant term and differentiating. Keeping this extra variable constant, we will achieve almost the desired result. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions and some surfaces having attractor behavior, where not all parts of the formulas are the same degree. The pictures show the result.
文摘Necessary and sufficient conditions are derived for some matrix equations that have a common least-squares solution.A general expression is provided when certain resolvable conditions are satisfied.This research extends existing work in the literature.
基金This project is supported by the National Natural Science Foundation of China
文摘This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise.
文摘In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
文摘There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.
文摘In this paper, it is discussed the model of a kind of nonlinear differential, equation d s d t=1-s-x 1s 0δQ 2(m 1s 0sk 1+s 0s-k) d x 1 d t=x 1Q(m 1s 0sk 1+s 0s-k)-x 1-x 2m 2x 1/Qk 2+x 1/Q d x 2 d t=x 2Q m 2x 1/Qk 2+x 1/Q-x 2.It is proved that the system is exist at least one stable periodic solution on under the following condition:m 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2】m 1δk 1(k 2+Q 2λ 2) 2.Furthermore, ifm 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2【m 1δk 1(k 2-Q 2λ 2) 2mold true them equilibrium point (s *,x * 1,x * 2)∈ set Ω is global asymptotic stable.
文摘In this paper, the existence and uniqueness of the local generalized solution of the initial boundary value problem for a nonlinear hyperbolic equation are proved by the contraction mapping principle and the sufficient conditions of blow_up of the solution in finite time are given.
基金Supported by the National Natural Science Foundation of China (10631030)PHD specialized grant of Ministry of Education of China (20060511001) and supported in part by the Xiao-Xiang Special Fund, Hunan
文摘The purpose of this article is to establish the regularity of the weak solutions for the nonlinear biharmonic equation {△^2u + a(x)u = g(x, u)u∈ H^2(R^N), where the condition u∈ H^2(R^N) plays the role of a boundary value condition, and as well expresses explicitly that the differential equation is to be satisfied in the weak sense.
基金*Supported by the National Natural Science Foundation of China under Grant No. 40876010, the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No. KZCX2-YW-Q03-08, the R &: D Special Fund for Public Welfare Industry (Meteorology) under Grant No. GYHY200806010, the LASG State Key Laboratory Special Fund and the Foundation of E-Institutes of Shanghai Municipal Education Commission (E03004)
文摘The approximate expressions of the travelling wave solutions for a class of nonlinear disturbed long-wave system are constructed using the generalized variational iteration method.
文摘In this paper, the nonlinear internal inerntial gravity wave equation is derived by the analysis method of phase plane and is solved by integration method. The results showed that this nonlinear equation not only has ordinary solitary wave solution but also has another extra-ordinary solutions, and the form of solution is related to stratification stability, wave velocity and direction of wave motion.
基金supported by the National Natural Science Foundation of Chinathe Natural Science Foundation of Shandong Province in China (Grant No Y2007G64)
文摘This paper presents a new and efficient approach for constructing exact solutions to nonlinear differential-difference equations (NLDDEs) and lattice equation. By using this method via symbolic computation system MAPLE, we obtained abundant soliton-like and/or period-form solutions to the (2+1)-dimensional Toda equation. It seems that solitary wave solutions are merely special cases in one family. Furthermore, the method can also be applied to other nonlinear differential-difference equations.
基金Supported by the Natural Science Foundation of Zhejiang Province(1 0 2 0 3 7)
文摘Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.
文摘Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.