期刊文献+
共找到1,546篇文章
< 1 2 78 >
每页显示 20 50 100
Negative Stiffness Mechanism on An Asymmetric Wave Energy Converter by Using A Weakly Nonlinear Potential Model
1
作者 Sunny Kumar POGULURI Dongeun KIM Yoon Hyeok BAE 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期689-700,共12页
Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentia... Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions. 展开更多
关键词 asymmetric wave energy converter negative stiffness mechanism weakly nonlinear potential flow POWER
下载PDF
NONLINEAR DYNAMICS MODFLING OF MECHANICAL PERIODICITY OF END DIASTOLIC VOLUME OF LEFT VENTRICLE 被引量:1
2
作者 XU Shi-xiong(许世雄) +1 位作者 MAO Xiao-chun(毛晓春) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第10期1183-1191,共9页
The cardiovascular system with a lumped parameter model is treated, in which the Starling model is used to simulate left ventricle and the four-element Burattini & Gnudi model is used in the description of... The cardiovascular system with a lumped parameter model is treated, in which the Starling model is used to simulate left ventricle and the four-element Burattini & Gnudi model is used in the description of arterial system. Moreover, the feedback action of arterial pressure on cardiac cycle is taken into account. The phenomenon of mechanical periodicity (MP) of end diastolic volume (EDV) of left ventricle is successfully simulated by solving a series of one-dimensional discrete nonlinear dynamical equations. The effects of cardiovascular parameters on MP is also discussed. 展开更多
关键词 left ventricle end diastolic volume mechanical periodicity nonlinear dynamics
下载PDF
Nonlinear Finite Element Analysis of Mechanical Performance of Reinforced Concrete Short-Limb Shear Wall 被引量:1
3
作者 XUELi-min 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第3期562-565,共4页
On the basis of test, nonlinear finite element analysis of reinforcedconcrete (R. C) short-limb shear walls under monotonic horizontal load are carried out by ANSYSprogram in order to understand the evolution of crack... On the basis of test, nonlinear finite element analysis of reinforcedconcrete (R. C) short-limb shear walls under monotonic horizontal load are carried out by ANSYSprogram in order to understand the evolution of cracking, deformation and failure course of thespecimens. At the same time, the results of numerical calculation are compared with the results oftest. The results indicate that, under monotonic horizontal load the failures of the specimens withflange wall and without flange wall all occur at the intersections of lintel bottom and limb ofwall, the failures also occur at the bottom of limb; the load-displacement curve of wall withoutflange is steeper than that of wall with flange, and the ductility is worse than that of wall withflange; the results, such as cracking, deformation, yield load and so on of finite element analysisagree well with the results of test. These results provide theoretical basis of study andapplication of R. C short-limb shear wall. 展开更多
关键词 reinforced concrete short-limb shear wall mechanical performance finiteelement method nonlinear
下载PDF
Adaptive Control of MIMO Mechanical Systems with Unknown Actuator Nonlinearities Based on the Nussbaum Gain Approach 被引量:4
4
作者 Ci Chen Zhi Liu +2 位作者 Yun Zhang C.L.Philip Chen Shengli Xie 《IEEE/CAA Journal of Automatica Sinica》 EI 2016年第1期26-34,共9页
This paper investigates MIMO mechanical systems with unknown actuator nonlinearities. A novel Nussbaum analysis tool for MIMO systems is established such that unknown time-varying control coefficients are tackled. In ... This paper investigates MIMO mechanical systems with unknown actuator nonlinearities. A novel Nussbaum analysis tool for MIMO systems is established such that unknown time-varying control coefficients are tackled. In contrast to existing literatures on continuous-time systems, the newly-developed Nussbaum tool focuses on extending the traditional Nussbaum result from one dimensional case to the multiple one. Specifically, not only the multiple unknown input coefficients are extended to the time-varying, but also the limitation of the prior knowledge of coefficients' upper and lower bounds is removed. Furthermore, an adaptive robust controller associated with the proposed tool is presented. The asymptotic tracking of MIMO mechanical systems is guaranteed with the help of the Lyapunov Theorem. Finally, a simulation example is provided to examine the validity of the proposed scheme. © 2014 Chinese Association of Automation. 展开更多
关键词 Actuators Adaptive control systems Control nonlinearities mechanical actuators mechanICS MIMO systems Time varying control systems
下载PDF
NONLINEAR COCHLEAR MECHANICAL MODEL AND ITS BIAS TECHNIQUE
5
作者 杨俊 《Journal of Electronics(China)》 1993年第2期124-131,共8页
The nonlinear equation modeling 2-D cochlear mechanics is established and aneffective method—bias technique for computing this equation is presented.The model showsmany effects which correlate closely to physiologica... The nonlinear equation modeling 2-D cochlear mechanics is established and aneffective method—bias technique for computing this equation is presented.The model showsmany effects which correlate closely to physiological experimental data.Quantitative data on thelevel-dependence of frequency responses are given. 展开更多
关键词 PHYSIOLOGICAL ACOUSTICS COCHLEAR mechanICS nonlinearITY Modeling
下载PDF
Mechanical quadrature methods and extrapolation for solving nonlinear boundary Helmholtz integral equations
6
作者 程攀 黄晋 王柱 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第12期1505-1514,共10页
This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mec... This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mechanical quadrature methods are simple without computing any singular integration. A nonlinear system is constructed by discretizing the nonlinear boundary integral equations. The stability and convergence of the system are proved based on an asymptotical compact theory and the Stepleman theorem. Using the h3-Richardson extrapolation algorithms (EAs), the accuracy to the order of O(h5) is improved. To slove the nonlinear system, the Newton iteration is discussed extensively by using the Ostrowski fixed point theorem. The efficiency of the algorithms is illustrated by numerical examples. 展开更多
关键词 Helmholtz equation mechanical quadrature method Newton iteration nonlinear boundary condition
下载PDF
Dielectric and Mechanical Nonlinear Behavior of Mn Doped PMN-35PT Ceramics
7
作者 Diouma Kobor Abdelowahed Hajjaji +4 位作者 Jose E. Garcia Rafel Perez Alfons Albareda Laurent Lebrun Daniel Guyomar 《Journal of Modern Physics》 2010年第4期211-216,共6页
This paper presents an investigation on dielectric and mechanical nonlinear properties in Mn-doped PMN-35PT ceramics. The structural study of the ceramics verifies that the 1% mol Mn doped PMN-35PT is a pure perovskit... This paper presents an investigation on dielectric and mechanical nonlinear properties in Mn-doped PMN-35PT ceramics. The structural study of the ceramics verifies that the 1% mol Mn doped PMN-35PT is a pure perovskite phase with a tetragonal symmetry. SEM micrograph shows the same microstructural mor- phology of an undoped ceramic. From the EPR spectra, it has been concluded that the major part of Mn is present in Mn2+ rather than in Mn4+ form. The addition of Mn2+ ions acts on the dielectric, piezoelectric and mechanical properties by decreasing the relative dielectric permittivity (3800 to 2074), the dielectric losses (0.60 to 0.53), the piezoelectric coefficient d33 (650 to 403 pC/N), and increasing the mechanical quality fac- tor Qm (78 to 317). It was found that in Mn2+ doped ceramics the dielectric response can not be described by Rayleigh law. This result can be understood taking into account that reversible motion of the domain wall is a relevant contribution to response of this material. 展开更多
关键词 PIEZOELECTRICS CERAMICS nonlinearity DIELECTRIC PROPERTIES mechanical PROPERTIES PMN-PT
下载PDF
Modeling and Analysis of Electrostatically Actuated MEMS under Combined Nonlinearities, Lorentz Force, and Mechanical Shock
8
作者 Emran Khoshrouye Ghiasi 《Journal of Control Science and Engineering》 2016年第2期82-89,共8页
This paper shows an analysis ofMEM S (micro electro mechanical systems) due to Lorentz force and mechanical shock. The formulation is based on a modified couple stress theory, the von Karman geometric nonlinearity a... This paper shows an analysis ofMEM S (micro electro mechanical systems) due to Lorentz force and mechanical shock. The formulation is based on a modified couple stress theory, the von Karman geometric nonlinearity and Reynolds equation as well. The model contains a silicon microbeam, which is encircled by a stationary plate. The non-dimensional governing equations and associated boundary conditions are then solved iteratively through the Galerkin weighted method. The results show that pull-in voltage is dependent on the geometry nonlinearity. It is also demonstrated that by increasing voltage between the silicon microbeam and stationary plate, the pull-in instability happens. 展开更多
关键词 M EM S mechanical shock nonlinearITY PULL-IN Galerkin weighted method dimensionless parameters.
下载PDF
The wave-corpuscle properties of microscopic particlesin the nonlinear quantum-mechanical systems
9
作者 Xiaofeng Pang 《Natural Science》 2011年第7期600-616,共17页
We debate first the properties of quantum mechanics and its difficulties and the reasons resulting in these diffuculties and its direction of development. The fundamental principles of nonlinear quantum mechanics are ... We debate first the properties of quantum mechanics and its difficulties and the reasons resulting in these diffuculties and its direction of development. The fundamental principles of nonlinear quantum mechanics are proposed and established based on these shortcomings of quantum mechanics and real motions and interactions of microscopic particles and backgound field in physical systems. Subsequently, the motion laws and wave-corpuscle duality of microscopic particles described by nonlinear Schr?dinger equation are studied completely in detail using these elementary principles and theories. Concretely speaking, we investigate the wave-particle duality of the solution of the nonlinear Schr?dinger equation, the mechanism and rules of particle collision and the uncertainty relation of particle’s momentum and position, and so on. We obtained that the microscopic particles obey the classical rules of collision of motion and satisfy the minimum uncertainty relation of position and momentum, etc. From these studies we see clearly that the moved rules and features of microscopic particle in nonlinear quantum mechanics is different from those in linear quantum mechanics. Therefore, nolinear quantum mechanics is a necessary result of development of quantum mechanics and represents correctly the properties of microscopic particles in nonlinear systems, which can solve difficulties and problems disputed for about a century by scientists in linear quantum mechanics field. 展开更多
关键词 Microscopic Particle nonlinear Interaction Quantum mechanics nonlinear Schrodinger Equation Basic Principle nonlinear Theory Wave-Particle Duality Motion Rule
下载PDF
A THEORETICAL APPROACH TO NONLINEAR MECHANICAL PROPERTIES OF THE ARTERIAL WALL WITH INITIAL STRESS
10
《Chinese Journal of Biomedical Engineering(English Edition)》 1999年第4期77-78,共2页
关键词 SG A THEORETICAL APPROACH TO nonlinear mechanical PROPERTIES OF THE ARTERIAL WALL WITH INITIAL STRESS LI
下载PDF
Nonlinear Bending of Piezoelectric Cylindrical Shell Reinforced with BNNTs under Electro-Thermo-Mechanical Loadings
11
作者 Jinhua Yang Pengjun Zhang 《Materials Sciences and Applications》 2015年第8期743-752,共10页
Under combined electro-thermo-mechanical loadings, the nonlinear bending of piezoelectric cylindrical shell reinforced with boron nitride nanotubes (BNNTs) is investigated in this paper. By employing nonlinear strains... Under combined electro-thermo-mechanical loadings, the nonlinear bending of piezoelectric cylindrical shell reinforced with boron nitride nanotubes (BNNTs) is investigated in this paper. By employing nonlinear strains based on Donnell shell theory and utilizing piezoelectric theory including thermal effects, the constitutive relations of the piezoelectric shell reinforced with BNNTs are established. Then the governing equations of the structure are derived through variational principle and resolved by applying the finite difference method. In numerical examples, the effects of geometric nonlinear, voltage, temperature, as well as volume fraction on the deflection and bending moment of axisymmetrical piezoelectric cylindrical shell reinforced with BNNTs are discussed in detail. 展开更多
关键词 nonlinear BENDING PIEZOELECTRIC CYLINDRICAL SHELL BNNT Electro-Thermo-mechanical Loadings
下载PDF
Topology Optimization of Compliant Mechanisms with Geometrical Nonlinearities Using the Ground Structure Approach 被引量:7
12
作者 ZHAN Jinqing ZHANG Xianmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期257-263,共7页
The majority of topology optimization of compliant mechanisms uses linear finite element models to find the structure responses.Because the displacements of compliant mechanisms are intrinsically large,the topological... The majority of topology optimization of compliant mechanisms uses linear finite element models to find the structure responses.Because the displacements of compliant mechanisms are intrinsically large,the topological design can not provide quantitatively accurate result.Thus,topological design of these mechanisms considering geometrical nonlinearities is essential.A new methodology for geometrical nonlinear topology optimization of compliant mechanisms under displacement loading is presented.Frame elements are chosen to represent the design domain because they are capable of capturing the bending modes.Geometrically nonlinear structural response is obtained by using the co-rotational total Lagrange finite element formulation,and the equilibrium is solved by using the incremental scheme combined with Newton-Raphson iteration.The multi-objective function is developed by the minimum strain energy and maximum geometric advantage to design the mechanism which meets both stiffness and flexibility requirements, respectively.The adjoint method and the direct differentiation method are applied to obtain the sensitivities of the objective functions. The method of moving asymptotes(MMA) is employed as optimizer.The numerical example is simulated to show that the optimal mechanism based on geometrically nonlinear formulation not only has more flexibility and stiffness than that based on linear formulation,but also has better stress distribution than the one.It is necessary to design compliant mechanisms using geometrically nonlinear topology optimization.Compared with linear formulation,the formulation for geometrically nonlinear topology optimization of compliant mechanisms can give the compliant mechanism that has better mechanical performance.A new method is provided for topological design of large displacement compliant mechanisms. 展开更多
关键词 compliant mechanisms topology optimization geometrical nonlinearities the ground structure approach displacement loading
下载PDF
Double deck bridge behavior and failure mechanism under seismic motions using nonlinear analyzes 被引量:7
13
作者 Shirin Alali Li Jianzhong Guo Guanzhong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第3期447-461,共15页
This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of differ... This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of different structural characteristics on the behavior of the double deck bridge under transverse seismic motions, and to detect the effect of bi- directional loading on the seismic response of this type of bridge. The results showed that some characteristics, such as the variable lateral stiffness, the foundation modelling, and the longitudinal reinforcement ratio of the upper and lower columns of the bridge pier bents have a major impact on the double deck bridge response and its failure mechanism under transverse seismic motions. It was found that the soft story failure mechanism :is not unique to the double deck bridge and its occurrence is related to some conditions and structural characteristics of the bridge structure. The analysis also showed that the seismic vulnerability of the double deck bridge under bi-directional loading: was severely increased compared to the bridge response under unidirectional transverse loading, and out-of-phase movements were triggered between adjacent girders. 展开更多
关键词 double deck bridge seismic response nonlinear time history analysis soft story mechanism bidirectional motion
下载PDF
TOPOLOGY SYNTHESIS OF GEOMETRICALLY NONLINEAR COMPLIANT MECHANISMS USING MESHLESS METHODS 被引量:3
14
作者 Yixian Du Liping Chen Zhen Luo 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第1期51-61,共11页
This paper presents a new method for topology optimization of geometrical nonlinear compliant mechanisms using the element-free Galerkin method (EFGM). The EFGM is employed as an alternative scheme to numerically so... This paper presents a new method for topology optimization of geometrical nonlinear compliant mechanisms using the element-free Galerkin method (EFGM). The EFGM is employed as an alternative scheme to numerically solve the state equations by fully taking advantage of its capability in dealing with large displacement problems. In the meshless method, the imposition of essential boundary conditions is also addressed. The popularly studied solid isotropic material with the penalization (SIMP) scheme is used to represent the nonlinear dependence between material properties and regularized discrete densities. The output displacement is regarded as the objective function and the adjoint method is applied to finding the sensitivity of the design functions. As a result, the optimization of compliant mechanisms is mathematically established as a nonlinear programming problem, to which the method of moving asymptotes (MMA) belonging to the sequential convex programming can be applied. The availability of the present method is finally demonstrated with several widely investigated numerical examples. 展开更多
关键词 compliant mechanisms topology optimization element-free Galerkin methods geometrical nonlinearity
下载PDF
Mechanical response of transmission lines based on sliding cable element 被引量:4
15
作者 刘云 钱振东 夏开全 《Journal of Central South University》 SCIE EI CAS 2014年第8期3370-3377,共8页
In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding ca... In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions. 展开更多
关键词 transmission lines sliding cable element updated Lagrangian formulation geometric nonlinearity mechanical response
下载PDF
The Analysis of Thermomechanical Periodic Motions of a Drinking Bird 被引量:2
16
作者 Schun T. Uechi Hiroshi Uechi Akihiko Nishimura 《World Journal of Engineering and Technology》 2019年第4期559-571,共13页
A water drinking bird or simply drinking bird (DB) is discussed in terms of a thermomechanical model. A mathematical expression of motion derived from the thermomechanical model of a drinking bird and numerical soluti... A water drinking bird or simply drinking bird (DB) is discussed in terms of a thermomechanical model. A mathematical expression of motion derived from the thermomechanical model of a drinking bird and numerical solutions are explicitly shown, which?is?helpful in understanding physical meanings and fundamental difference between mechanical and thermomechanical periodic motion. The mathematical and physical differences between mechanical and thermomechanical motions are clearly examined, resulting in time-independent and time-dependent coupling constants of equations of motion and continuous transitions between bifurcation solutions. The thermodynamical and irreversible process of a drinking bird motion could be theoretically examined and practically applied to energy harvesting technologies by way of the current modeling. As an example of irreversible thermodynamics, the thermomechanical model of DB will help understand heat engines manifested from microscopic to macroscopic systems. 展开更多
关键词 mechanical and THERMOmechanical Model nonlinear Equations Continuous TRANSITIONS between BIFURCATION Solutions Energy HARVESTING Technologies
下载PDF
Nonlinear wave mechanisms of very fast chemical and phase transformations in solids. applications to cosmic chemistry processes near to 0 k, to explosive-like decays of metastable solid phases and to catastrophic geotectonic phenomena 被引量:1
17
作者 Viktor Barelko Dmitryi Kiryukhin +2 位作者 Igor Barkalov Galina Kichigina Alain Pumir 《Natural Science》 2010年第12期1356-1359,共4页
In the Universe, chemical reactions occur at very low temperature, very close to 0K. According to the standard Arrhenius mechanism, these reactions should occur with vanishingly small efficiency. However, cold planets... In the Universe, chemical reactions occur at very low temperature, very close to 0K. According to the standard Arrhenius mechanism, these reactions should occur with vanishingly small efficiency. However, cold planets of the solar system, such as Pluto, are covered by a crust composed of ammonia and methane, produced on earth only at very high temperature and pressure, in the presence of catalysts. This observation is incompatible with the predictions of Arrhenius kinetics. Here, we propose a general mechanism to explain the abundance of chemical reactions at very low temperature in the Universe. We postulate that the feedback between mechanical stress and chemical reaction provides, through fracture propagation, the energy necessary to overcome the activation barrier in the absence of thermal fluctuations. The notion described in this work can also be applied to other fields such as explosive-like solid phase transformations and catastrophical geotectonics phenomena (earthquakes). 展开更多
关键词 nonlinear Waves Coupling between CHEMISTRY and mechanics Combustion at Very Low Temperature Geochemistry COSMOCHEMISTRY GEOTECTONICS
下载PDF
Stability Analysis of a Single-Degree-of Freedom Mechanical Model with Distinct Critical Points: I. Bifurcation Theory Approach 被引量:1
18
作者 Dimitrios S. Sophianopoulos 《World Journal of Mechanics》 2013年第1期62-81,共20页
The buckling and post-buckling response of a single-degree-of-freedom mechanical model is re-examined in this work, within the context of nonlinear stability and bifurcation theory. This system has been reported in pi... The buckling and post-buckling response of a single-degree-of-freedom mechanical model is re-examined in this work, within the context of nonlinear stability and bifurcation theory. This system has been reported in pioneer as well as in more recent literature to exhibit all kinds of distinct critical points. Its response is thoroughly discussed, the effect of all parameters involved is extensively examined, including imperfection sensitivity, and the results obtained lead to the important conclusion that the model is possibly associated with the butterfly singularity, a fact which will be validated by the contents of a companion paper, based on catastrophe theory. 展开更多
关键词 mechanical Models nonlinear Stability DISTINCT Critical POINTS BIFURCATION Theory SINGULARITIES
下载PDF
Effects of simulated on-fire processing conditions on the microstructure and mechanical performance of Q345R steel
19
作者 Yi-chao Peng Hao-hao Xu Mai-cang Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第1期49-56,共8页
A series of simulated on-fire processing experiments on Q345R steel plates was conducted, and the plates' Brinell hardness, ten- sile strength, and impact energy were tested. Microstructure morphologies were systemat... A series of simulated on-fire processing experiments on Q345R steel plates was conducted, and the plates' Brinell hardness, ten- sile strength, and impact energy were tested. Microstructure morphologies were systematically analyzed using a scanning electron micro- scope with the aim of investigating the effect of the steel's microstructure on its performance. All examined performance parameters exhib- ited a substantial decrease in the cases of samples heat-treated at temperatures near 700℃. However, although the banded structure decreased with increasing treatment temperature and holding time, it had little effect on the performance decline in fact. Further analysis revealed that pearlite degeneration near 700℃, which was induced by the interaction of both subcritical annealing and conventional spherical annealing, was the primary reason for the degradation behavior. Consequently, some nonlinear mathematical models of different mechanical perform- ances were established to facilitate processing adjustments. 展开更多
关键词 low alloy steels heat treatment mechanical properties MICROSTRUCTURE nonlinear mathematical models
下载PDF
Controlling chaos based on an adaptive nonlinear compensator mechanism
20
作者 田玲玲 李东海 孙先仿 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第2期507-519,共13页
The control problems of chaotic systems are investigated in the presence of parametric uncertainty and persistent external disturbances based on nonlinear control theory. By using a designed nonlinear compensator mech... The control problems of chaotic systems are investigated in the presence of parametric uncertainty and persistent external disturbances based on nonlinear control theory. By using a designed nonlinear compensator mechanism, the system deterministic nonlinearity, parametric uncertainty and disturbance effect can be compensated effectively. The renowned chaotic Lorenz system subjected to parametric variations and external disturbances is studied as an illustrative example. From the Lyapunov stability theory, sufficient conditions for choosing control parameters to guarantee chaos control are derived. Several experiments are carried out, including parameter change experiments, set-point change experiments and disturbance experiments. Simulation results indicate that the chaotic motion can be regulated not only to steady states but also to any desired periodic orbits with great immunity to parametric variations and external disturbances. 展开更多
关键词 chaotic system nonlinear compensator mechanism Lorenz chaotic system
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部