In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion. The reflection keeps the solution above a given stochastic process. In order t...In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion. The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected G-BSDEs, we apply a "martingale condition" instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization. We then give some applications including a generalized Feynman-Kac formula of an obstacle problem for fully nonlinear partial differential equation and option pricing of American types under volatility uncertainty.展开更多
基金supported by the Tian Yuan Projection of the National Natural Science Foundation of China(Grant Nos.11526205 and 11626247)the German Research Foundation(DFG)via CRC1283the Lebesgue Center of Mathematics(“Investissements d’aveni”Program)(Grant No.ANR-11-LABX-0020-01)
文摘In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion. The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected G-BSDEs, we apply a "martingale condition" instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization. We then give some applications including a generalized Feynman-Kac formula of an obstacle problem for fully nonlinear partial differential equation and option pricing of American types under volatility uncertainty.