In this paper a new class of finite-dimensional even and odd nonlinear pair coherent states (EONLPCSs), which can be realized via operating the superposed evolution operators D±(τ) on the state |q, 0), is ...In this paper a new class of finite-dimensional even and odd nonlinear pair coherent states (EONLPCSs), which can be realized via operating the superposed evolution operators D±(τ) on the state |q, 0), is constructed, then their orthonormalized property, completeness relations and some nonclassical properties are discussed. It is shown that the finite-dimensional EONLPCSs possess normalization and completeness relations. Moreover, the finite-dimensional EONLPCSs exhibit remarkably different sub-Poissonian distributions and phase probability distributions for different values of parameters q, η and ξ.展开更多
基金supported by the National Natural Science Foundation of China (Grant 10574060)the Natural Science Foundation of Liaocheng University of China (Grant No X071049)
文摘In this paper a new class of finite-dimensional even and odd nonlinear pair coherent states (EONLPCSs), which can be realized via operating the superposed evolution operators D±(τ) on the state |q, 0), is constructed, then their orthonormalized property, completeness relations and some nonclassical properties are discussed. It is shown that the finite-dimensional EONLPCSs possess normalization and completeness relations. Moreover, the finite-dimensional EONLPCSs exhibit remarkably different sub-Poissonian distributions and phase probability distributions for different values of parameters q, η and ξ.