A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conce...A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.展开更多
The nonlinear phenomenon is very popular in dielectric barrier discharge (DBD) plasmas. There are at least three kinds of spatial and temporal nonlinear phenomena appearing synchronously or asynchronously in DBDs, i...The nonlinear phenomenon is very popular in dielectric barrier discharge (DBD) plasmas. There are at least three kinds of spatial and temporal nonlinear phenomena appearing synchronously or asynchronously in DBDs, i.e. self-organized patterns, striations and chaos. This paper describes the recent research and progress in understanding the nature of these nonlinear phenomena. Patterns are macroscopic structures with certain spatial and/or temporal periodicities generated through self- organization of microscopic parameters. The physics of patterns in DBDs is mainly associated with lateral dynamic behaviors or the lateral non-local effect of charged particles resulting in the lateral development or non-uniformity of discharge. Striations are ionization waves with unique properties determined by transport phenomena, ionization processes and electron kinetics in current-carrying plasmas. The physics of striations in DBDs is mainly associated with the advances in non-local electron kinetics in spatially inhomogeneous plasmas. Chaos is a kind of random and non-periodic phenomenon occunfng in a determined dynamic system, following a series of certain rules while exhibiting random locomotion, and is regarded as an intrinsic and ubiquitous phenomenon in a nonlinear dynamic system. An evolution trajectory including period-doubling bifurcation to chaos was observed in DBDs or DBD-derived plasmas. In a common sense, it is believed that the formation of all the three nonlinear phenomena in a DBD system should be related to the non-local transversal and/or longitudinal dynamics of space charges (i.e. non-local effect) or the localized electric field interaction. Future work is still needed on the underlying physics and should be directed to pursuing the unification of these nonlinear phenomena in DBD.展开更多
Performance degradation or system resource exhaustion can be attributed to inadequate computing resources as a result of software aging.In the real world,the workload of a web server varies with time,which will cause ...Performance degradation or system resource exhaustion can be attributed to inadequate computing resources as a result of software aging.In the real world,the workload of a web server varies with time,which will cause a nonlinear aging phenomenon.The nonlinear property often makes analysis and modelling difficult.Workload is one of the important factors influencing the speed of aging.This paper quantitatively analyzes the workload-aging relation and proposes a framework for aging control under varying workloads.In addition,this paper proposes an approach that employs prior information of workloads to accurately forecast incoming system exhaustion.The workload data are used as a threshold to divide the system resource usage data into multiple sections,while in each section the workload data can be treated as a constant.Each section is described by an individual autoregression(AR)model.Compared with other AR models,the proposed approach can forecast the aging process with a higher accuracy.展开更多
A mechanical-piezoelectric system is explored to reduce vibration and to harvest energy. The system consists of a piezoelectric device and a nonlinear energy sink (NES), which is a nonlinear oscillator without linea...A mechanical-piezoelectric system is explored to reduce vibration and to harvest energy. The system consists of a piezoelectric device and a nonlinear energy sink (NES), which is a nonlinear oscillator without linear stiffness. The NES-piezoelectric sys- tem is attached to a 2-degree-of-freedom primary system subjected to a shock load. This mechanical-piezoelectric system is investigated based on the concepts of the percentages of energy transition and energy transition measure. The strong target energy transfer occurs for some certain transient excitation amplitude and NES nonlinear stiffness. The plots of wavelet transforms are used to indicate that the nonlinear beats initiate energy transitions between the NES-piezoelectric system and the primary system in the tran- sient vibration, and a 1:1 transient resonance capture occurs between two subsystems. The investigation demonstrates that the integrated NES-piezoelectric mechanism can re- duce vibration and harvest some vibration energy.展开更多
A new numerical integration scheme incorporating a predict-correct algorithm for solving the nonlinear dynamic systems was proposed in this paper. A nonlinear dynamic system governed by the equation v = F(v, t) was ...A new numerical integration scheme incorporating a predict-correct algorithm for solving the nonlinear dynamic systems was proposed in this paper. A nonlinear dynamic system governed by the equation v = F(v, t) was transformed into the form as v = Hv + f(v, t). The nonlinear part f(v, t) was then expanded by Taylor series and only the first-order term retained in the polynomial. Utilizing the theory of linear differential equation and the precise time-integration method, an exact solution for linearizing equation was obtained. In order to find the solution of the original system, a third-order interpolation polynomial of v was used and an equivalent nonlinear ordinary differential equation was regenerated. With a predicted solution as an initial value and an iteration scheme, a corrected result was achieved. Since the error caused by linearization could be eliminated in the correction process, the accuracy of calculation was improved greatly. Three engineering scenarios were used to assess the accuracy and reliability of the proposed method and the results were satisfactory.展开更多
The nonlinear aeroelastic response of a two-degree-of-freedom airfoil with freeplay and cubic nonlinearities in supersonic flows is investigated. The second-order piston theory is used to analyze a double-wedge airfoi...The nonlinear aeroelastic response of a two-degree-of-freedom airfoil with freeplay and cubic nonlinearities in supersonic flows is investigated. The second-order piston theory is used to analyze a double-wedge airfoil. Then, the fold bifurcation and the amplitude jump phenomenon are detected by the averaging method and the multi-variable Floquet theory. The analyticall results are further verified by numerical simulations. Finally, the influence of the freeplay parameters on the aeroelastic response is analyzed in detail.展开更多
电液伺服系统是非线性动力学系统,在工作过程中容易出现非线性振动、噪声、冲击和爬行等异常现象,而且诱因不易确定,严重影响系统的稳定性。根据非线性动力学原理,建立电液伺服系统的非线性动力学模型。通过理论研究,探索非线性液压弹...电液伺服系统是非线性动力学系统,在工作过程中容易出现非线性振动、噪声、冲击和爬行等异常现象,而且诱因不易确定,严重影响系统的稳定性。根据非线性动力学原理,建立电液伺服系统的非线性动力学模型。通过理论研究,探索非线性液压弹簧力和非线性摩擦力等非线性因素对系统动力学特性的影响规律。指出非线性液压弹簧力作用可以用Duffing方程描述,非线性摩擦力作用可以用Van Der Pol方程描述。用研究非线性动力学系统的有效方法:时间历程、频闪采样、功率谱等,对实测信号进行深入分析,多方位揭示电液伺服系统非线性振动的机理及诱因。结果表明,非线性液压弹簧力引起的'跳跃现象'和非线性摩擦力引起的极限环型振荡的共同作用是导致系统发生非线性振动的一个主要诱因,值得关注。展开更多
通过理论分析和试验验证研究了液压缸运动的非线性动态特征。提出弹簧刚度随活塞位移变化和工作状态不同而呈现出软硬弹簧特性的非线性弹簧力特征,其作用效果可以用有阻尼的Duffing方程来近似描述;摩擦力随速度的变化遵循Streibeck曲线...通过理论分析和试验验证研究了液压缸运动的非线性动态特征。提出弹簧刚度随活塞位移变化和工作状态不同而呈现出软硬弹簧特性的非线性弹簧力特征,其作用效果可以用有阻尼的Duffing方程来近似描述;摩擦力随速度的变化遵循Streibeck曲线,其作用效果随工作点在曲线上所处区段而异,可以用van der Pol方程来近似描述。指出液压缸低速爬行是在特定工况下的“跳跃现象”、自激振动等多重作用的结果。展开更多
文摘A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.
基金National Natural Science Foundation of China for continuous financial support under Grant Nos. 10475007, 10875010, 11175017 and 51607074the State Education Ministry of China under Grant No. NCET-05-0176
文摘The nonlinear phenomenon is very popular in dielectric barrier discharge (DBD) plasmas. There are at least three kinds of spatial and temporal nonlinear phenomena appearing synchronously or asynchronously in DBDs, i.e. self-organized patterns, striations and chaos. This paper describes the recent research and progress in understanding the nature of these nonlinear phenomena. Patterns are macroscopic structures with certain spatial and/or temporal periodicities generated through self- organization of microscopic parameters. The physics of patterns in DBDs is mainly associated with lateral dynamic behaviors or the lateral non-local effect of charged particles resulting in the lateral development or non-uniformity of discharge. Striations are ionization waves with unique properties determined by transport phenomena, ionization processes and electron kinetics in current-carrying plasmas. The physics of striations in DBDs is mainly associated with the advances in non-local electron kinetics in spatially inhomogeneous plasmas. Chaos is a kind of random and non-periodic phenomenon occunfng in a determined dynamic system, following a series of certain rules while exhibiting random locomotion, and is regarded as an intrinsic and ubiquitous phenomenon in a nonlinear dynamic system. An evolution trajectory including period-doubling bifurcation to chaos was observed in DBDs or DBD-derived plasmas. In a common sense, it is believed that the formation of all the three nonlinear phenomena in a DBD system should be related to the non-local transversal and/or longitudinal dynamics of space charges (i.e. non-local effect) or the localized electric field interaction. Future work is still needed on the underlying physics and should be directed to pursuing the unification of these nonlinear phenomena in DBD.
基金supported by the Natural Science Foundation of Tianjin(19JCYBJC15900)the National Key Research and Development Program of China(2018YFC0823701)+1 种基金an Open Fund of Tianjin Key Lab for Advanced Signal Processing(2017ASP-TJ04)a linkage grant of the Australian Research Council(LP160101691)
文摘Performance degradation or system resource exhaustion can be attributed to inadequate computing resources as a result of software aging.In the real world,the workload of a web server varies with time,which will cause a nonlinear aging phenomenon.The nonlinear property often makes analysis and modelling difficult.Workload is one of the important factors influencing the speed of aging.This paper quantitatively analyzes the workload-aging relation and proposes a framework for aging control under varying workloads.In addition,this paper proposes an approach that employs prior information of workloads to accurately forecast incoming system exhaustion.The workload data are used as a threshold to divide the system resource usage data into multiple sections,while in each section the workload data can be treated as a constant.Each section is described by an individual autoregression(AR)model.Compared with other AR models,the proposed approach can forecast the aging process with a higher accuracy.
基金supported by the National Natural Science Foundation of China(Nos.11572182,11232009,and 11402151) the Natural Science Foundation of Liaoning Province(No.2015020106)
文摘A mechanical-piezoelectric system is explored to reduce vibration and to harvest energy. The system consists of a piezoelectric device and a nonlinear energy sink (NES), which is a nonlinear oscillator without linear stiffness. The NES-piezoelectric sys- tem is attached to a 2-degree-of-freedom primary system subjected to a shock load. This mechanical-piezoelectric system is investigated based on the concepts of the percentages of energy transition and energy transition measure. The strong target energy transfer occurs for some certain transient excitation amplitude and NES nonlinear stiffness. The plots of wavelet transforms are used to indicate that the nonlinear beats initiate energy transitions between the NES-piezoelectric system and the primary system in the tran- sient vibration, and a 1:1 transient resonance capture occurs between two subsystems. The investigation demonstrates that the integrated NES-piezoelectric mechanism can re- duce vibration and harvest some vibration energy.
基金Project supported by the Department of Industrial and Systems Engineering,The Hong Kong Polytechnic University (No.1-45-56-0000).
文摘A new numerical integration scheme incorporating a predict-correct algorithm for solving the nonlinear dynamic systems was proposed in this paper. A nonlinear dynamic system governed by the equation v = F(v, t) was transformed into the form as v = Hv + f(v, t). The nonlinear part f(v, t) was then expanded by Taylor series and only the first-order term retained in the polynomial. Utilizing the theory of linear differential equation and the precise time-integration method, an exact solution for linearizing equation was obtained. In order to find the solution of the original system, a third-order interpolation polynomial of v was used and an equivalent nonlinear ordinary differential equation was regenerated. With a predicted solution as an initial value and an iteration scheme, a corrected result was achieved. Since the error caused by linearization could be eliminated in the correction process, the accuracy of calculation was improved greatly. Three engineering scenarios were used to assess the accuracy and reliability of the proposed method and the results were satisfactory.
文摘The nonlinear aeroelastic response of a two-degree-of-freedom airfoil with freeplay and cubic nonlinearities in supersonic flows is investigated. The second-order piston theory is used to analyze a double-wedge airfoil. Then, the fold bifurcation and the amplitude jump phenomenon are detected by the averaging method and the multi-variable Floquet theory. The analyticall results are further verified by numerical simulations. Finally, the influence of the freeplay parameters on the aeroelastic response is analyzed in detail.
文摘电液伺服系统是非线性动力学系统,在工作过程中容易出现非线性振动、噪声、冲击和爬行等异常现象,而且诱因不易确定,严重影响系统的稳定性。根据非线性动力学原理,建立电液伺服系统的非线性动力学模型。通过理论研究,探索非线性液压弹簧力和非线性摩擦力等非线性因素对系统动力学特性的影响规律。指出非线性液压弹簧力作用可以用Duffing方程描述,非线性摩擦力作用可以用Van Der Pol方程描述。用研究非线性动力学系统的有效方法:时间历程、频闪采样、功率谱等,对实测信号进行深入分析,多方位揭示电液伺服系统非线性振动的机理及诱因。结果表明,非线性液压弹簧力引起的'跳跃现象'和非线性摩擦力引起的极限环型振荡的共同作用是导致系统发生非线性振动的一个主要诱因,值得关注。
文摘通过理论分析和试验验证研究了液压缸运动的非线性动态特征。提出弹簧刚度随活塞位移变化和工作状态不同而呈现出软硬弹簧特性的非线性弹簧力特征,其作用效果可以用有阻尼的Duffing方程来近似描述;摩擦力随速度的变化遵循Streibeck曲线,其作用效果随工作点在曲线上所处区段而异,可以用van der Pol方程来近似描述。指出液压缸低速爬行是在特定工况下的“跳跃现象”、自激振动等多重作用的结果。