期刊文献+
共找到9,843篇文章
< 1 2 250 >
每页显示 20 50 100
The Stability Research for the Finite Difference Scheme of a Nonlinear Reaction-diffusion Equation 被引量:6
1
作者 XU Chen-mei 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第2期222-227,共6页
In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite differ... In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme. 展开更多
关键词 reaction-diffusion equation finite difference scheme stability research variational approximation method
下载PDF
UNIFORM QUASI-DIFFERENTIABILITY OF SEMIGROUP TO NONLINEAR REACTION-DIFFUSION EQUATIONS WITH SUPERCRITI C AL EXPONENT 被引量:1
2
作者 钟延生 孙春友 《Acta Mathematica Scientia》 SCIE CSCD 2017年第2期301-315,共15页
A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect ... A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect to the initial value. As an application, this proves the upper-bound of fractal dimension for its global attractor in the corresponding space. 展开更多
关键词 Uniform quasi-differentiability semigroup reaction-diffusion equation
下载PDF
NUMERICAL SOLUTION OF A NONLINEAR REACTION-DIFFUSION EQUATION
3
作者 唐世敏 秦素娣 R.O.Weber 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第8期751-758,共8页
A nonlinear reaction-diffusion equation is studied numerically by a Petrov-Galerkin finite element method, which has been proved to be 2nd-order accurate in time and 4th-order in space. The comparison between the exac... A nonlinear reaction-diffusion equation is studied numerically by a Petrov-Galerkin finite element method, which has been proved to be 2nd-order accurate in time and 4th-order in space. The comparison between the exact and numerical solutions of progressive waves shows that this numerical scheme is quite accurate, stable andefflcient. It is also shown that any local disturbance will spread, have a full growth and finally form two progressive waves propagating in both directions. The shape and the speed of the long term progressive waves are determined by the system itself, and do not depend on the details of the initial values. 展开更多
关键词 reaction-diffusion equation Petrov-Galerkin finite element method progressive wave
下载PDF
A MONOTONE COMPACT IMPLICIT SCHEME FOR NONLINEAR REACTION-DIFFUSION EQUATIONS 被引量:5
4
作者 Yuanming Wang Department of Mathematics,East China Normal University,Shanghai 200241,China Division of Computational Science,E-Institute of Shanghai Universities,Shanghai Normal Benyu Guo Department of Mathematics,Shanghai Normal University,Shanghai 200234,China Division of Computational Science,E-Institute of Shanghai Universities,Shanghai,China 《Journal of Computational Mathematics》 SCIE CSCD 2008年第2期123-148,共26页
A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative metho... A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative method for the resulting discrete problem is presented. The sequence of iteration converges monotonically to the unique solution of the discrete problem, and the convergence rate is either quadratic or nearly quadratic, depending on the property of the nonlinear reaction. The numerical results illustrate the high accuracy of the proposed scheme and the rapid convergence rate of.the iteration. 展开更多
关键词 nonlinear reaction-diffusion equation Monotone compact implicit scheme High accuracy Monotone iteration Rapid convergence rate.
原文传递
A generalization of (G'/G)-expansion method and its application to nonlinear reaction-diffusion equations arising in mathematical biology 被引量:1
5
作者 A. Jabbari J. Manafian Heris +1 位作者 H. Kheiri A. Bekir 《International Journal of Biomathematics》 2014年第3期41-50,共10页
In this paper, by introducing a proper transformation, the (Gr/G)-expansion method is further extended into the nonlinear reaction diffusion equations in mathematical biology whose balancing numbers may be negative ... In this paper, by introducing a proper transformation, the (Gr/G)-expansion method is further extended into the nonlinear reaction diffusion equations in mathematical biology whose balancing numbers may be negative integer. As a result, hyperbolic function solutions and trigonometric function solutions with free parameters are obtained. When the parameters are taken as special values the solitary wave solutions and the periodic wave solutions are also derived from the traveling wave solutions. Moreover, it is observed that the suggested techniques is compatible of such problems. 展开更多
关键词 Generalized (GI/G)-expansion method exact solutions nonlinear reaction-diffusion equations.
原文传递
A Two-grid Method with Expanded Mixed Element for Nonlinear Reaction-diffusion Equations
6
作者 Wei Liu Hong-xing Rui Hui Guo 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2011年第3期495-502,共8页
Expanded mixed finite element approximation of nonlinear reaction-diffusion equations is discussed. The equations considered here are used to model the hydrologic and bio-geochemical phenomena. To linearize the mixed-... Expanded mixed finite element approximation of nonlinear reaction-diffusion equations is discussed. The equations considered here are used to model the hydrologic and bio-geochemical phenomena. To linearize the mixed-method equations, we use a two-grid method involving a small nonlinear system on a coarse gird of size H and a linear system on a fine grid of size h. Error estimates are derived which demonstrate that the error is O(△t + h k+1 + H 2k+2 d/2 ) (k ≥ 1), where k is the degree of the approximating space for the primary variable and d is the spatial dimension. The above estimates are useful for determining an appropriate H for the coarse grid problems. 展开更多
关键词 two-grid method expanded mixed finite element reaction-diffusion equation nonlinear problem
原文传递
The Blowing-up of the Solutions for a Class of Nonlinear Reaction-Diffusion Equations
7
作者 YAN Gui\|qing Department of Mathematics and Information Science, Yantai University Yantai 264005,China 《Systems Science and Systems Engineering》 CSCD 1999年第4期9-12,共4页
In this paper, we discuss the blowing\|up of the solutions of a class of nonlinear reaction\|diffusion equations with the general (or nonlinear) boundary conditions. On some proper assumptions, we conclude that there ... In this paper, we discuss the blowing\|up of the solutions of a class of nonlinear reaction\|diffusion equations with the general (or nonlinear) boundary conditions. On some proper assumptions, we conclude that there is no global smooth solution, i.e., the solutions blow up in the finite time. 展开更多
关键词 nonlinear reaction\|diffusion equation blow\|up
原文传递
THE GLOBAL DUFORT-FRANKEL DIFFERENCE APPROXIMATION FOR NONLINEAR REACTION-DIFFUSION EQUATIONS
8
作者 Lu, BN Wan, GH Guo, BL 《Journal of Computational Mathematics》 SCIE CSCD 1998年第3期275-288,共14页
In this paper, the initial value problem of nonlinear reaction-diffusion equation is considered. The Dufort-Frankel finite difference approximation for the long time scheme is given for the d-dimensional reaction-diff... In this paper, the initial value problem of nonlinear reaction-diffusion equation is considered. The Dufort-Frankel finite difference approximation for the long time scheme is given for the d-dimensional reaction-diffusion equation with the two different cases. The global solution and global attractor are discussed for the Dufort-Frankel scheme. Moreover properties of the solution are studied. The error estimate is presented in a finite time region and in the global time region for some special cases. Finally the numerical results for the equation are investigated for Allen-Cahn equation and some other equations and the homoclinic orbit is simulated numerically. 展开更多
关键词 global Dufort-Frankel method reaction-diffusion equation global attractor error estimate numerical experiments
原文传递
Wave equations and reaction-diffusion equations with several nonlinear source terms
9
作者 刘亚成 徐润章 于涛 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第9期1209-1218,共10页
The initial boundary value problem of wave equations and reaction-diffusion equations with several nonlinear source terms in a bounded domain is studied by potential well method. The invarianee of some sets under the ... The initial boundary value problem of wave equations and reaction-diffusion equations with several nonlinear source terms in a bounded domain is studied by potential well method. The invarianee of some sets under the flow of these problems and the vacuum isolation of solutions are obtained by introducing a family of potential wells. Then the threshold result of global existence and nonexistence of solutions are given. Finally, the problem with critical initial conditions are discussed. 展开更多
关键词 wave equations reaction-diffusion equations potential wells global existence nonexistence
下载PDF
THE EXACT MEROMORPHIC SOLUTIONS OF SOME NONLINEAR DIFFERENTIAL EQUATIONS
10
作者 刘慧芳 毛志强 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期103-114,共12页
We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Co... We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions. 展开更多
关键词 Nevanlinna theory nonlinear differential equations meromorphic functions entire functions
下载PDF
THE ASYMPTOTIC BEHAVIOR AND OSCILLATION FOR A CLASS OF THIRD-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS
11
作者 黄先勇 邓勋环 王其如 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期925-946,共22页
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe... In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results. 展开更多
关键词 nonlinear delay dynamic equations NONOSCILLATION asymptotic behavior Philostype oscillation criteria generalized Riccati transformation
下载PDF
Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrodinger equation with sextic operator under non-zero boundary conditions
12
作者 Luyao Zhang Xiyang Xie 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期268-280,共13页
We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis main... We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons. 展开更多
关键词 double-pole solitons double-pole breathers Riemann-Hilbert problem non-zero boundary con-ditions nonlinear Schrodinger equation with sextic operator
下载PDF
Bifurcations, Analytical and Non-Analytical Traveling Wave Solutions of (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq Equation
13
作者 Dahe Feng Jibin Li Airen Zhou 《Applied Mathematics》 2024年第8期543-567,共25页
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ... For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation. 展开更多
关键词 (2 + 1)-Dimensional nonlinear Dispersive Boussinesq equation BIFURCATIONS Phase Portrait Analytical Periodic Wave Solution Periodic Cusp Wave Solution
下载PDF
On Two Types of Stability of Solutions to a Pair of Damped Coupled Nonlinear Evolution Equations
14
作者 Mark Jones 《Advances in Pure Mathematics》 2024年第5期354-366,共13页
The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid... The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense. 展开更多
关键词 nonlinear Schrödinger equation STABILITY Capillary-Gravity Waves
下载PDF
A Comparative Study of Adomian Decomposition Method with Variational Iteration Method for Solving Linear and Nonlinear Differential Equations
15
作者 Sarah Khaled Al Baghdadi N. Ameer Ahammad 《Journal of Applied Mathematics and Physics》 2024年第8期2789-2819,共31页
This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dyna... This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering. 展开更多
关键词 Differential equations Numerical Analysis Mathematical Computing Engineering Models nonlinear Dynamics
下载PDF
Crank-Nicolson Quasi-Compact Scheme for the Nonlinear Two-Sided Spatial Fractional Advection-Diffusion Equations
16
作者 Dechao Gao Zeshan Qiu +1 位作者 Lizan Wang Jianxin Li 《Journal of Applied Mathematics and Physics》 2024年第4期1089-1100,共12页
The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper... The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective. 展开更多
关键词 Crank-Nicolson Quasi-Compact Scheme Fractional Advection-Diffusion equations nonlinear Stability and Convergence
下载PDF
Existence and Stability of Standing Waves for the Nonlinear Schrödinger Equation with Combined Nonlinearities and a Partial Harmonic Potential
17
作者 Wei Wang 《Journal of Applied Mathematics and Physics》 2024年第5期1606-1615,共10页
In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercriti... In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential. 展开更多
关键词 nonlinear Schrödinger equation Orbital Stability Standing Waves
下载PDF
Stability of Standing Waves for the Nonlinear Schrödinger Equation with Mixed Power-Type and Hartree-Type Nonlinearities
18
作者 Chunyang Yan 《Journal of Applied Mathematics and Physics》 2024年第10期3439-3457,共19页
This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0,   (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,... This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0,   (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,x)is a complex valued function of (t,x)∈ℝ+×ℝN. The parameters N≥3, 0p4Nand 0γmin{ 4,N }. By using the variational methods and concentration compactness principle, we prove the orbital stability of standing waves. 展开更多
关键词 nonlinear Schrödinger equation Concentration Compactness Principle Orbital Stability
下载PDF
Thermomechanical Dynamics (TMD) and Bifurcation-Integration Solutions in Nonlinear Differential Equations with Time-Dependent Coefficients
19
作者 Hiroshi Uechi Lisa Uechi Schun T. Uechi 《Journal of Applied Mathematics and Physics》 2024年第5期1733-1743,共11页
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba... The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general. 展开更多
关键词 The nonlinear Differential equation with Time-Dependent Coefficients The Bifurcation-Integration Solution Nonequilibrium Irreversible States Thermomechanical Dynamics (TMD)
下载PDF
GLOBAL STABILITY OF TRAVELING WAVEFRONTS FOR NONLOCAL REACTION-DIFFUSION EQUATIONS WITH TIME DELAY 被引量:4
20
作者 杨兆星 张国宝 《Acta Mathematica Scientia》 SCIE CSCD 2018年第1期289-302,共14页
This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability o... This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability of noncritical traveling wavefronts (waves with speeds c 〉 c*, where c=c* is the minimal speed) is established, when the initial perturbations around the wavefront decays to zero exponentially in space as x → -∞, but it can be allowed arbitrary large in other locations, which improves the results in[9, 18, 21]. 展开更多
关键词 nonlocal reaction-diffusion equations traveling wavefronts STABILITY compari- son principle weighted energy method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部