The equation of motion of sandwich beam with pyramidal lattice core in the supersonic flow considering geometric nonlinearity is formulated using Hamilton's principle. The piston theory is used to evaluate aerodynami...The equation of motion of sandwich beam with pyramidal lattice core in the supersonic flow considering geometric nonlinearity is formulated using Hamilton's principle. The piston theory is used to evaluate aerodynamic pressure. The structural aeroelastic properties are analyzed using frequency- and time-domain methods, and some interesting phenomena are observed. It is noted that the flutter of sandwich beam occurs under the coupling effect of low order modes. The critical flutter aerodynamic pressure of the sandwich beam is higher than that of the isotropic beam with the same weight, length and width. The influence of inclination angle of core truss on flutter characteristic is analyzed.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11572007 and 11172084)
文摘The equation of motion of sandwich beam with pyramidal lattice core in the supersonic flow considering geometric nonlinearity is formulated using Hamilton's principle. The piston theory is used to evaluate aerodynamic pressure. The structural aeroelastic properties are analyzed using frequency- and time-domain methods, and some interesting phenomena are observed. It is noted that the flutter of sandwich beam occurs under the coupling effect of low order modes. The critical flutter aerodynamic pressure of the sandwich beam is higher than that of the isotropic beam with the same weight, length and width. The influence of inclination angle of core truss on flutter characteristic is analyzed.