In this paper, we construct photon-added f-deformed coherent states (PAf-DCSs) for nonlinear bosonic fields by discussing Klauder's minimal set of conditions required to obtain coherent states. Using this set of no...In this paper, we construct photon-added f-deformed coherent states (PAf-DCSs) for nonlinear bosonic fields by discussing Klauder's minimal set of conditions required to obtain coherent states. Using this set of nonlinear states, we propose a very useful scheme for generating the maximal amount of entanglement via unitary beam splitters for different strength regimes of the input field α, deformation q and excitation number m. Therefore, the possibility to create highly entangled states and to control the entanglement is proposed. Moreover, the condition for a maximal and separable output beam state is obtained. Finally, we examine the statistical properties of the PAf-DCSs through the Mandel parameter and exploit a connection between this quantity and the behavior variation of the output state entanglement. Our result may open new perspectives in different tasks of quantum information processing.展开更多
A new kind of k-quantum nonlinear coherent states,i.e.,the k eigenstates of the k-th power~k (k≥3) of the generalized annihilation operator=1/f() of f-oscillators,are obtained and their properties are discussed.The c...A new kind of k-quantum nonlinear coherent states,i.e.,the k eigenstates of the k-th power~k (k≥3) of the generalized annihilation operator=1/f() of f-oscillators,are obtained and their properties are discussed.The completeness of the k states is investigated.An alternative method to construct them is proposed.It is shown that these states may form a complete Hilbert space,and all of them can be generated by a linear superposition of k Roy-type nonlinear coherent states.Physically,they can be generated by a linear superposition of the time-dependent Roy-type nonlinear coherent states at different instants.展开更多
Recently, nonlinear displaced number states (NDNSs) have been manually introduced, in which the deformation function f(n) has been artificially added to the previously well-known displaced number states (DNSs). ...Recently, nonlinear displaced number states (NDNSs) have been manually introduced, in which the deformation function f(n) has been artificially added to the previously well-known displaced number states (DNSs). Indeed, just a simple comparison has been performed between the standard coherent state and nonlinear coherent state for the formation of NDNSs. In the present paper, after expressing enough physical motivation of our procedure, four distinct classes of NDNSs are presented by applying algebraic and group treatments. To achieve this purpose, by considering the DNSs and recalling the nonlinear coherent states formalism, the NDNSs are logically defined through an algebraic consideration. In addition, by using a particular class of Gilmore-Perelomov-type of SU(1,1) and a class of SU(2) coherent states, the NDNSs are introduced via group-theoretical approach. Then, in order to examine the nonclassical behavior of these states, sub-Poissonian statistics by evaluating Mandel parameter and Wigner quasi-probability distribution function associated with the obtained NDNSs are discussed, in detail.展开更多
Using a numerical computational method, quasiprobability distributions of new kinds of even and odd nonlinear coherent states (EONLCS) are investigated. The results show that the distributions of the new even nonlin...Using a numerical computational method, quasiprobability distributions of new kinds of even and odd nonlinear coherent states (EONLCS) are investigated. The results show that the distributions of the new even nonlinear coherent states (NLCS) are distinct from those of the new odd NLCS and imply that the new EONLCS always exhibit some different nonclassical effects. Finally, with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics, the tomograms of the new EONLCS are calculated. This is a new way of obtaining the tomogram function.展开更多
Using the Pegg-Barnett formalism we study the phase probability distributions and the squeezing effects of measured phase operators in the nonlinear coherent states introduced by R.L. de Matos Filho and W. Vogel to de...Using the Pegg-Barnett formalism we study the phase probability distributions and the squeezing effects of measured phase operators in the nonlinear coherent states introduced by R.L. de Matos Filho and W. Vogel to describe the center-of mass motion of a trapped ion and the q-coherent states. Moreover, we have obtained the completeness relation of nonlinear coherent states and proved that the q-Fock state \n>(q) introduced in many papers is, in fact, the usual Fock state.展开更多
By virtue of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of annihilation and creation operators of f-oscillator, this paper obtains two new types of ...By virtue of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of annihilation and creation operators of f-oscillator, this paper obtains two new types of squeezed operators and f-analogues of squeezed one-photon states, which are quite different from ones constructed by Song and Fan (Phys. Lett. A 294 (2002) 66). Subsequently, some nonclassical properties of the states are investigated in detail.展开更多
In this paper a new class of finite-dimensional even and odd nonlinear pair coherent states (EONLPCSs), which can be realized via operating the superposed evolution operators D±(τ) on the state |q, 0), is ...In this paper a new class of finite-dimensional even and odd nonlinear pair coherent states (EONLPCSs), which can be realized via operating the superposed evolution operators D±(τ) on the state |q, 0), is constructed, then their orthonormalized property, completeness relations and some nonclassical properties are discussed. It is shown that the finite-dimensional EONLPCSs possess normalization and completeness relations. Moreover, the finite-dimensional EONLPCSs exhibit remarkably different sub-Poissonian distributions and phase probability distributions for different values of parameters q, η and ξ.展开更多
Using non-Hermitian realizations of SU(1,1) Lie algebra in terms of an f-oscillator, we generalize the notion of nonlinear coherent states to the single-mode and two-mode nonlinear SU(1,1) coherent states. Taking the ...Using non-Hermitian realizations of SU(1,1) Lie algebra in terms of an f-oscillator, we generalize the notion of nonlinear coherent states to the single-mode and two-mode nonlinear SU(1,1) coherent states. Taking the nonlinearity function , their statistical properties are studied.展开更多
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in...This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.展开更多
Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP i...Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP is introduced, and it is used to extend the conventional generic model control (GMC) to nonlinear processes with large input time-delay. Then the STF is adopted to estimate process states and sensor bias, the estimated sensor bias is used to drive a fault detection logic. When a sensor fault is detected, the estimated process states by the STF will be used to construct the process output to form a 'soft sensor', which is then used by the NSP (instead of the real outputs) to provide state predictors. These procedures constitute an active fault tolerant control scheme. Finally, simulation results of a three-tank-system demonstrate the effectiveness of the proposed approach.展开更多
Lithium-ion batteries(LIBs), as the first choice for green batteries, have been widely used in energy storage, electric vehicles, 3C devices, and other related fields, and will have greater application prospects in th...Lithium-ion batteries(LIBs), as the first choice for green batteries, have been widely used in energy storage, electric vehicles, 3C devices, and other related fields, and will have greater application prospects in the future. However, one of the obstacles hindering the future development of battery technology is how to accurately evaluate and monitor battery health, which affects the entire lifespan of battery use. It is not enough to assess battery health comprehensively through the state of health(SoH) alone, especially when nonlinear aging occurs in onboard applications. Here, for the first time, we propose a brand-new health evaluation indicator—state of nonlinear aging(SoNA) to explain the nonlinear aging phenomenon that occurs during the battery use, and also design a knee-point identification method and two SoNA quantitative methods. We apply our health evaluation indicator to build a complete LIB full-lifespan grading evaluation system and a ground-to-cloud service framework, which integrates multi-scenario data collection, multi-dimensional data-based grading evaluation, and cloud management functions. Our works fill the gap in the LIBs’ health evaluation of nonlinear aging, which is of great significance for the health and safety evaluation of LIBs in the field of echelon utilization such as vehicles and energy storage. In addition, this comprehensive evaluation system and service framework are expected to be extended to other battery material systems other than LIBs, yet guiding the design of new energy ecosystem.展开更多
This paper, will seek the optimal control and corresponding trajectories of the singularly perturbed nonlinear state regulator problem. Under appropriate hypotheses. it will be possible to complete an asymptotic solut...This paper, will seek the optimal control and corresponding trajectories of the singularly perturbed nonlinear state regulator problem. Under appropriate hypotheses. it will be possible to complete an asymptotic solution which is uniformly valid when e→0.展开更多
State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation pro...State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation process is proposed using cubature Kalman filter (CKF) to incorporate delayed measurements. The square-root version of CI(F (SCKF) algorithm is given and the system with delayed measurements is described. On this basis, the sample-state augmentation method for the SCKF algorithm is provided and the implementation of the proposed algorithm is constructed. Then a nonlinear state space model for fermentation process is established and the SCKF algorithm incorporating delayed measurements based on fermentation process model is presented to implement the nonlinear state estimation. Finally, the proposed nonlinear state estimation methodology is applied to the state estimation for penicillin and industrial yeast fermentation processes. The simulation results show that the on-fine state estimation for fermentation process can be achieved by the proposed method with higher esti- mation accuracy and better stability.展开更多
Using the technique of integration within an ordered product of nonlinear Bose operators and by composing the nonlinear coherent state's over-completeness relation, we construct the corresponding P-representation ...Using the technique of integration within an ordered product of nonlinear Bose operators and by composing the nonlinear coherent state's over-completeness relation, we construct the corresponding P-representation theory. The generalized P-representation for some nonlinear Bose operators can be established.展开更多
The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whos...The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant (and so its frequency) depends on the quantum states ofanother system. Recently, it is realized that by the assumption of frequency modulation of ω to ω √1+ μα+α the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence or trequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized tlamiltonian of nonlinear quantum optical spring and it's solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed.展开更多
We construct the nonlinear tripartite entangled state representation and the related generalized Wigner operator. Then we discussed the Wigner functions of the nonlinear tripartite entangled state and the three-mode n...We construct the nonlinear tripartite entangled state representation and the related generalized Wigner operator. Then we discussed the Wigner functions of the nonlinear tripartite entangled state and the three-mode nonlinear squeezed vacuum state, and obtained the classical Weyl corresponding function of the three-mode nonlinear squeezed state.展开更多
Using both the fermionic-kike and the bosonic-like properties of the Paulispin operators σ_+, σ_-, and σ_z we discuss the derivation of Bose description of the Pauli spinoperators originally proposed by Shigefumi N...Using both the fermionic-kike and the bosonic-like properties of the Paulispin operators σ_+, σ_-, and σ_z we discuss the derivation of Bose description of the Pauli spinoperators originally proposed by Shigefumi Naka, and deduce another new bosonic representation ofPauli operators. The related coherent states, which are nonlinear coherent state and coherent spinstates for two spins, respectively, are constructed.展开更多
We explore the theoretical possibility of extending the usual squeezed state to those produced by nonlinear singlemode squeezing operators. We derive the wave functions of exp[-(ig/2)((1-X2)1/2P + P(1-X2)1/2)...We explore the theoretical possibility of extending the usual squeezed state to those produced by nonlinear singlemode squeezing operators. We derive the wave functions of exp[-(ig/2)((1-X2)1/2P + P(1-X2)1/2)]|0 in the coordinate representation. A new operator's disentangling formula is derived as a by-product.展开更多
Based on the technique of integral within an ordered product of nonlinear bosonic operators we construct a kind of tripartite nonlinear entangled states, which can make up a complete set. As its application, we also d...Based on the technique of integral within an ordered product of nonlinear bosonic operators we construct a kind of tripartite nonlinear entangled states, which can make up a complete set. As its application, we also derive nonlinear 3-mode charge-related entangled state. The essential point for constructing these states lies in choosing the appropriate charge operator.展开更多
Based on the technique of integral within an ordered product of nonlinear bosonic operators,we constructa new kind of tripartite nonlinear entangled state |α,γ〉_λ in 3-mode Fock space,which can make up a complete ...Based on the technique of integral within an ordered product of nonlinear bosonic operators,we constructa new kind of tripartite nonlinear entangled state |α,γ〉_λ in 3-mode Fock space,which can make up a complete set.Wealso simply discuss its properties and application.展开更多
文摘In this paper, we construct photon-added f-deformed coherent states (PAf-DCSs) for nonlinear bosonic fields by discussing Klauder's minimal set of conditions required to obtain coherent states. Using this set of nonlinear states, we propose a very useful scheme for generating the maximal amount of entanglement via unitary beam splitters for different strength regimes of the input field α, deformation q and excitation number m. Therefore, the possibility to create highly entangled states and to control the entanglement is proposed. Moreover, the condition for a maximal and separable output beam state is obtained. Finally, we examine the statistical properties of the PAf-DCSs through the Mandel parameter and exploit a connection between this quantity and the behavior variation of the output state entanglement. Our result may open new perspectives in different tasks of quantum information processing.
基金The project supported by National Natural Science Foundation of China under Grant No.10074072the Natural Science Foundation of Shandong Province of China under Grant No.Y2002A05
文摘A new kind of k-quantum nonlinear coherent states,i.e.,the k eigenstates of the k-th power~k (k≥3) of the generalized annihilation operator=1/f() of f-oscillators,are obtained and their properties are discussed.The completeness of the k states is investigated.An alternative method to construct them is proposed.It is shown that these states may form a complete Hilbert space,and all of them can be generated by a linear superposition of k Roy-type nonlinear coherent states.Physically,they can be generated by a linear superposition of the time-dependent Roy-type nonlinear coherent states at different instants.
文摘Recently, nonlinear displaced number states (NDNSs) have been manually introduced, in which the deformation function f(n) has been artificially added to the previously well-known displaced number states (DNSs). Indeed, just a simple comparison has been performed between the standard coherent state and nonlinear coherent state for the formation of NDNSs. In the present paper, after expressing enough physical motivation of our procedure, four distinct classes of NDNSs are presented by applying algebraic and group treatments. To achieve this purpose, by considering the DNSs and recalling the nonlinear coherent states formalism, the NDNSs are logically defined through an algebraic consideration. In addition, by using a particular class of Gilmore-Perelomov-type of SU(1,1) and a class of SU(2) coherent states, the NDNSs are introduced via group-theoretical approach. Then, in order to examine the nonclassical behavior of these states, sub-Poissonian statistics by evaluating Mandel parameter and Wigner quasi-probability distribution function associated with the obtained NDNSs are discussed, in detail.
基金Project supported by the Natural Science Foundation of Shandong Province of China (Grant No Y2008A23)the Natural Science Foundation of Liaocheng University (Grant No X071049)
文摘Using a numerical computational method, quasiprobability distributions of new kinds of even and odd nonlinear coherent states (EONLCS) are investigated. The results show that the distributions of the new even nonlinear coherent states (NLCS) are distinct from those of the new odd NLCS and imply that the new EONLCS always exhibit some different nonclassical effects. Finally, with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics, the tomograms of the new EONLCS are calculated. This is a new way of obtaining the tomogram function.
文摘Using the Pegg-Barnett formalism we study the phase probability distributions and the squeezing effects of measured phase operators in the nonlinear coherent states introduced by R.L. de Matos Filho and W. Vogel to describe the center-of mass motion of a trapped ion and the q-coherent states. Moreover, we have obtained the completeness relation of nonlinear coherent states and proved that the q-Fock state \n>(q) introduced in many papers is, in fact, the usual Fock state.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574060) and the Natural Science Foundation of Shandong Province, China (Grant No Y2004A09).
文摘By virtue of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of annihilation and creation operators of f-oscillator, this paper obtains two new types of squeezed operators and f-analogues of squeezed one-photon states, which are quite different from ones constructed by Song and Fan (Phys. Lett. A 294 (2002) 66). Subsequently, some nonclassical properties of the states are investigated in detail.
基金supported by the National Natural Science Foundation of China (Grant 10574060)the Natural Science Foundation of Liaocheng University of China (Grant No X071049)
文摘In this paper a new class of finite-dimensional even and odd nonlinear pair coherent states (EONLPCSs), which can be realized via operating the superposed evolution operators D±(τ) on the state |q, 0), is constructed, then their orthonormalized property, completeness relations and some nonclassical properties are discussed. It is shown that the finite-dimensional EONLPCSs possess normalization and completeness relations. Moreover, the finite-dimensional EONLPCSs exhibit remarkably different sub-Poissonian distributions and phase probability distributions for different values of parameters q, η and ξ.
文摘Using non-Hermitian realizations of SU(1,1) Lie algebra in terms of an f-oscillator, we generalize the notion of nonlinear coherent states to the single-mode and two-mode nonlinear SU(1,1) coherent states. Taking the nonlinearity function , their statistical properties are studied.
基金the National Natural Science Foundation of China(51939001,52171292,51979020,61976033)Dalian Outstanding Young Talents Program(2022RJ05)+1 种基金the Topnotch Young Talents Program of China(36261402)the Liaoning Revitalization Talents Program(XLYC20-07188)。
文摘This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China (No. 60025307, No. 60234010) the National 863 Project(No. 2001AA413130,2002AA412420)+1 种基金 Research Fund for the Doctoral Program of Higher Education (No. 20020003063) the National 973 Program
文摘Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP is introduced, and it is used to extend the conventional generic model control (GMC) to nonlinear processes with large input time-delay. Then the STF is adopted to estimate process states and sensor bias, the estimated sensor bias is used to drive a fault detection logic. When a sensor fault is detected, the estimated process states by the STF will be used to construct the process output to form a 'soft sensor', which is then used by the NSP (instead of the real outputs) to provide state predictors. These procedures constitute an active fault tolerant control scheme. Finally, simulation results of a three-tank-system demonstrate the effectiveness of the proposed approach.
基金financially supported by the National Natural Science Foundation of China(NSFC,U20A20310,52107230,52176199,52102470)the support of the research project Model2Life(03XP0334),funded by the German Federal Ministry of Education and Research(BMBF)。
文摘Lithium-ion batteries(LIBs), as the first choice for green batteries, have been widely used in energy storage, electric vehicles, 3C devices, and other related fields, and will have greater application prospects in the future. However, one of the obstacles hindering the future development of battery technology is how to accurately evaluate and monitor battery health, which affects the entire lifespan of battery use. It is not enough to assess battery health comprehensively through the state of health(SoH) alone, especially when nonlinear aging occurs in onboard applications. Here, for the first time, we propose a brand-new health evaluation indicator—state of nonlinear aging(SoNA) to explain the nonlinear aging phenomenon that occurs during the battery use, and also design a knee-point identification method and two SoNA quantitative methods. We apply our health evaluation indicator to build a complete LIB full-lifespan grading evaluation system and a ground-to-cloud service framework, which integrates multi-scenario data collection, multi-dimensional data-based grading evaluation, and cloud management functions. Our works fill the gap in the LIBs’ health evaluation of nonlinear aging, which is of great significance for the health and safety evaluation of LIBs in the field of echelon utilization such as vehicles and energy storage. In addition, this comprehensive evaluation system and service framework are expected to be extended to other battery material systems other than LIBs, yet guiding the design of new energy ecosystem.
基金Project supported by the National Natural Science Foundation of Chinathe Natural Science Foundation of Fujian Province
文摘This paper, will seek the optimal control and corresponding trajectories of the singularly perturbed nonlinear state regulator problem. Under appropriate hypotheses. it will be possible to complete an asymptotic solution which is uniformly valid when e→0.
基金Supported by the National Natural Science Foundation of China(61503019)the Beijing Natural Science Foundation(4152041)Beijing Higher Education Young Elite Teacher Project(YETP0504)
文摘State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation process is proposed using cubature Kalman filter (CKF) to incorporate delayed measurements. The square-root version of CI(F (SCKF) algorithm is given and the system with delayed measurements is described. On this basis, the sample-state augmentation method for the SCKF algorithm is provided and the implementation of the proposed algorithm is constructed. Then a nonlinear state space model for fermentation process is established and the SCKF algorithm incorporating delayed measurements based on fermentation process model is presented to implement the nonlinear state estimation. Finally, the proposed nonlinear state estimation methodology is applied to the state estimation for penicillin and industrial yeast fermentation processes. The simulation results show that the on-fine state estimation for fermentation process can be achieved by the proposed method with higher esti- mation accuracy and better stability.
文摘Using the technique of integration within an ordered product of nonlinear Bose operators and by composing the nonlinear coherent state's over-completeness relation, we construct the corresponding P-representation theory. The generalized P-representation for some nonlinear Bose operators can be established.
文摘The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant (and so its frequency) depends on the quantum states ofanother system. Recently, it is realized that by the assumption of frequency modulation of ω to ω √1+ μα+α the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence or trequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized tlamiltonian of nonlinear quantum optical spring and it's solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed.
基金Open Foundation of Laboratory of High-intensity Optics,中国科学院资助项目
文摘We construct the nonlinear tripartite entangled state representation and the related generalized Wigner operator. Then we discussed the Wigner functions of the nonlinear tripartite entangled state and the three-mode nonlinear squeezed vacuum state, and obtained the classical Weyl corresponding function of the three-mode nonlinear squeezed state.
文摘Using both the fermionic-kike and the bosonic-like properties of the Paulispin operators σ_+, σ_-, and σ_z we discuss the derivation of Bose description of the Pauli spinoperators originally proposed by Shigefumi Naka, and deduce another new bosonic representation ofPauli operators. The related coherent states, which are nonlinear coherent state and coherent spinstates for two spins, respectively, are constructed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175113)
文摘We explore the theoretical possibility of extending the usual squeezed state to those produced by nonlinear singlemode squeezing operators. We derive the wave functions of exp[-(ig/2)((1-X2)1/2P + P(1-X2)1/2)]|0 in the coordinate representation. A new operator's disentangling formula is derived as a by-product.
基金The project supported by National Natural Science Foundation of China and the President Foundation of the Chinese Academy of Sciences
文摘Based on the technique of integral within an ordered product of nonlinear bosonic operators we construct a kind of tripartite nonlinear entangled states, which can make up a complete set. As its application, we also derive nonlinear 3-mode charge-related entangled state. The essential point for constructing these states lies in choosing the appropriate charge operator.
基金the Natural Science Foundation of Jiangxi Provincethe Foundation of Education Department of Jiangxi Province under Grant No.[2007]136
文摘Based on the technique of integral within an ordered product of nonlinear bosonic operators,we constructa new kind of tripartite nonlinear entangled state |α,γ〉_λ in 3-mode Fock space,which can make up a complete set.Wealso simply discuss its properties and application.