The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar...The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.展开更多
In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-...In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.展开更多
In this paper, for a second-order three-point boundary value problem u″+f(t,u)=0,0〈t〈1,au(0)-bu′(0)=0,u(1)-au(η)=0,where η∈ (0, 1), a, b, α ∈R with a^2 + b^2 〉 0, the existence of its nontrivia...In this paper, for a second-order three-point boundary value problem u″+f(t,u)=0,0〈t〈1,au(0)-bu′(0)=0,u(1)-au(η)=0,where η∈ (0, 1), a, b, α ∈R with a^2 + b^2 〉 0, the existence of its nontrivial solution is studied. The'conditions on f which guarantee the existence of nontrivial solution are formulated. As an application, some examples to demonstrate the results are given.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, ...An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, and is not asymptotic at zero and infinity.展开更多
A class of third-order three-point boundary value problems is considered, where the nonlinear term is a Caratheodory function. By introducing a height function and considering the imtegration of this height function, ...A class of third-order three-point boundary value problems is considered, where the nonlinear term is a Caratheodory function. By introducing a height function and considering the imtegration of this height function, an existence theorem of solution is proved when the limit growth function exists. The main tools are the Lebesgue dominated convergence theorem and the Schauder fixed point theorem.展开更多
This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- an...This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- and upper-solution pair, a concept defined in this paper, and employ the Nagumo conditions and algebraic boundary layer functions to ensure the existence of solutions of the problem. The uniformly valid asymptotic estimate of the solutions is given as well. The differential systems have nonlinear dependence on all order derivatives of the unknown.展开更多
In this paper.the author uses the methods in [1,2] to study the existence of solutiojns of three point boundary value problems for nonlinear fourth order differentialequation.
In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption ...In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption on a and f, we establish intervals of the parameter λ, which yield the existence of positive solution, our proof based on Krasnosel'skii fixed-point theorem in cone.{u"(t)+λa(t)f(t,u(t))=0,0<t<1,u(t)=u(1-t),u′(0)-u′(1)=u(1/2)is studied,where A is a positive parameter,under various assumption on a and f,we establish intervals of the parameter A,which yield the existence of positive solution,our proof based on Krasnosel'skii fixed-point theorem in cone.展开更多
Using the method of lower and upper solutions, we study the following singular nonlinear three-point boundary value problems: , where K ∈ C[0,1] ,0 α η < 1 and λ is a positive parameter and present the existenc...Using the method of lower and upper solutions, we study the following singular nonlinear three-point boundary value problems: , where K ∈ C[0,1] ,0 α η < 1 and λ is a positive parameter and present the existence, uniqueness, and the dependency on parameters of the positive solutions under various assumptions. Our result improves those in the previous literatures.展开更多
Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1...Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.展开更多
In this paper,two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses[HL(2:1,1Z;2,1Z]x″(t)=f(t,x(t),x′(t)),t∈(0,1),t≠t_k,k=1,2,.....In this paper,two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses[HL(2:1,1Z;2,1Z]x″(t)=f(t,x(t),x′(t)),t∈(0,1),t≠t_k,k=1,2,...,m, Δx|_~t=t_k =I_k(x(t_k)),k=1,2,...,m, Δx′|_~t=t_k =J_k(x(t_k),x′(t_k)),k=1,2,...,m, x(0)=0,x(1)=αx(η).展开更多
In this paper, the existence and uniqueness theorems of solutions of k-point boundary value problems for nth-order nonlinear differential equations are established by Leray-Schauder continuation theorem.
We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1...We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1,2,…,k,x(0)=0=x(1)-αx(η),where 0〈η〈1,α∈R,and f:[0,1]×R×R→R,Ii:R×R→R,Ji:R×R→R(i=1,2,…,k)are continuous. Our results is new and different from previous results. In particular, we obtain the Green function of the problem, which makes the problem simpler.展开更多
In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = ...In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.展开更多
In this paper,we are concerned with the existence of multiple positive solutions to a second-order three-point boundary value problem on the half-line.The results are obtained by the Leggett-Williams fixed point theorem.
This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(...This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.展开更多
In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in...In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.展开更多
In this paper, we study the existence of positive solutions for a class of third-order three-point boundary value problem. By employing the fixed point theorem on cone, some new criteria to ensure the three-point boun...In this paper, we study the existence of positive solutions for a class of third-order three-point boundary value problem. By employing the fixed point theorem on cone, some new criteria to ensure the three-point boundary value problem has at least three positive solutions are obtained. An example illustrating our main result is given. Moreover, some previous results will be improved significantly in our paper.展开更多
In this paper, we consider the three-point boundary value problem (φp(uˊˊ(t)))ˊ +a(t)f(t, u(t), uˊ(t), uˊˊ(t)) = 0, t ∈ [0, 1] subject to the boundary conditions u(0) =βuˊ(0), uˊ(1) =...In this paper, we consider the three-point boundary value problem (φp(uˊˊ(t)))ˊ +a(t)f(t, u(t), uˊ(t), uˊˊ(t)) = 0, t ∈ [0, 1] subject to the boundary conditions u(0) =βuˊ(0), uˊ(1) = αuˊ(η), uˊˊ(0) = 0, where φp(s) = |s|p?2s with p 〉 1, 0 〈 α, η 〈 1 and 0 ≤ β 〈 1. Applying a fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 12002195)the National Science Fund for Distinguished Young Scholars (No. 12025204)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.
基金Supported by the National Nature Science Foundation of China(11071001)Supported by the Key Program of Ministry of Education of China(205068)
文摘In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.
基金This work was supported by Key Academic Discipline of Zhejiang Province of China(2005)the Natural Science Foundation of Zhejiang Province of China(Y605144)the Education Department of Zhejiang Province of China(20051897).
文摘In this paper, for a second-order three-point boundary value problem u″+f(t,u)=0,0〈t〈1,au(0)-bu′(0)=0,u(1)-au(η)=0,where η∈ (0, 1), a, b, α ∈R with a^2 + b^2 〉 0, the existence of its nontrivial solution is studied. The'conditions on f which guarantee the existence of nontrivial solution are formulated. As an application, some examples to demonstrate the results are given.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
文摘An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, and is not asymptotic at zero and infinity.
文摘A class of third-order three-point boundary value problems is considered, where the nonlinear term is a Caratheodory function. By introducing a height function and considering the imtegration of this height function, an existence theorem of solution is proved when the limit growth function exists. The main tools are the Lebesgue dominated convergence theorem and the Schauder fixed point theorem.
基金supported by the National Natural Science Foundation of China (Grant No.10771212)the Natural Science Foundation of Jiangsu Province (Grant No.BK2008119)the Natural Science Foundation of the Education Division of Jiangsu Province (Grant No.08KJB110011)
文摘This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- and upper-solution pair, a concept defined in this paper, and employ the Nagumo conditions and algebraic boundary layer functions to ensure the existence of solutions of the problem. The uniformly valid asymptotic estimate of the solutions is given as well. The differential systems have nonlinear dependence on all order derivatives of the unknown.
文摘In this paper.the author uses the methods in [1,2] to study the existence of solutiojns of three point boundary value problems for nonlinear fourth order differentialequation.
基金Supported by the National Natural Science Foundation of China(11261053) Supported by the Natural Science Foundation of Gansu Province of China(1308RJZA125)
文摘In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption on a and f, we establish intervals of the parameter λ, which yield the existence of positive solution, our proof based on Krasnosel'skii fixed-point theorem in cone.{u"(t)+λa(t)f(t,u(t))=0,0<t<1,u(t)=u(1-t),u′(0)-u′(1)=u(1/2)is studied,where A is a positive parameter,under various assumption on a and f,we establish intervals of the parameter A,which yield the existence of positive solution,our proof based on Krasnosel'skii fixed-point theorem in cone.
文摘Using the method of lower and upper solutions, we study the following singular nonlinear three-point boundary value problems: , where K ∈ C[0,1] ,0 α η < 1 and λ is a positive parameter and present the existence, uniqueness, and the dependency on parameters of the positive solutions under various assumptions. Our result improves those in the previous literatures.
文摘Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.
文摘In this paper,two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses[HL(2:1,1Z;2,1Z]x″(t)=f(t,x(t),x′(t)),t∈(0,1),t≠t_k,k=1,2,...,m, Δx|_~t=t_k =I_k(x(t_k)),k=1,2,...,m, Δx′|_~t=t_k =J_k(x(t_k),x′(t_k)),k=1,2,...,m, x(0)=0,x(1)=αx(η).
文摘In this paper, the existence and uniqueness theorems of solutions of k-point boundary value problems for nth-order nonlinear differential equations are established by Leray-Schauder continuation theorem.
基金Supported by the National Natural Science Foundation of China(10371006)
文摘We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1,2,…,k,x(0)=0=x(1)-αx(η),where 0〈η〈1,α∈R,and f:[0,1]×R×R→R,Ii:R×R→R,Ji:R×R→R(i=1,2,…,k)are continuous. Our results is new and different from previous results. In particular, we obtain the Green function of the problem, which makes the problem simpler.
基金supported by the National Natural Science Foundation of China (11071149, 10771128)the NSF of Shanxi Province (2006011002, 2010011001-1)
文摘In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.
基金Supported by the NNSF of China(10871116)Supported by the NSFSP of China(ZR2010AM005)
文摘In this paper,we are concerned with the existence of multiple positive solutions to a second-order three-point boundary value problem on the half-line.The results are obtained by the Leggett-Williams fixed point theorem.
基金Tutorial Scientific Research Program Foundation of Education Department of Gansu Province(0710-04).
文摘This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.
基金Project supported by Foundation of Major Project of ScienceTechnology of Chinese Education Ministy,NSF of Education Committee of Jiangsu Province
文摘In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.
文摘In this paper, we study the existence of positive solutions for a class of third-order three-point boundary value problem. By employing the fixed point theorem on cone, some new criteria to ensure the three-point boundary value problem has at least three positive solutions are obtained. An example illustrating our main result is given. Moreover, some previous results will be improved significantly in our paper.
基金Supported by the HEBNSF of China(A2012506010)Supported by the YSF of Heibei Province(A2014506016)
文摘In this paper, we consider the three-point boundary value problem (φp(uˊˊ(t)))ˊ +a(t)f(t, u(t), uˊ(t), uˊˊ(t)) = 0, t ∈ [0, 1] subject to the boundary conditions u(0) =βuˊ(0), uˊ(1) = αuˊ(η), uˊˊ(0) = 0, where φp(s) = |s|p?2s with p 〉 1, 0 〈 α, η 〈 1 and 0 ≤ β 〈 1. Applying a fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem.