The large-range uncertainties of specific impulse,mass flow per second,aerodynamic coefficients and atmospheric density during rapid turning in solid launch vehicles(SLVs) ascending leads to the deviation of the actua...The large-range uncertainties of specific impulse,mass flow per second,aerodynamic coefficients and atmospheric density during rapid turning in solid launch vehicles(SLVs) ascending leads to the deviation of the actual trajectory from the reference one.One of the traditional trajectory tracking methods is to observe the uncertainties by Extended State Observer(ESO) and then modify the control commands.However,ESO cannot accurately estimate the uncertainties when the uncertainty ranges are large,which reduces the guidance accuracy.This paper introduces differential inclusion(DI) and designs a controller to solve the large-range parameter uncertainties problem.When above uncertainties have large ranges,it can be combined with the ascent dynamic equation and described as a DI system in the mathematical form of a set.If the DI system is stabilized,all the subsets are stabilized.Different from the traditional controllers,the parameters of the designed controller are calculated by the uncertain boundaries.Therefore,the controller can solve the problem of large-range parameter uncertainties of in ascending.Firstly,the ascent deviation system is obtained by linearization along the reference trajectory.The trajectory tracking system with engine parameters and aerodynamic uncertainties is described as an ascent DI system with respect to state deviation,which is called DI system.A DI adaptive saturation tracking controller(DIAST) is proposed to stabilize the DI system.Secondly,an improved barrier Lyapunov function(named time-varying tangent-log barrier Lyapunov function) is proposed to constrain the state deviations.Compared with traditional barrier Lyapunov function,it can dynamically adjust the boundary of deviation convergence,which improve the convergence rate and accuracy of altitude,velocity and LTIA deviation.In addition,the correction amplitudes of angle of attack(AOA) and angle of sideslip(AOS) need to be limited in order to guarantee that the overload constraint is not violated during actual flight.In this paper,a fixed time adaptive saturation compensation auxiliary system is designed to shorten the saturation time and accelerate the convergence rate,which eliminates the adverse effects caused by the saturation.Finally,it is proved that the state deviations are ultimately uniformly bounded under the action of DIAST controller.Simulation results show that the DI ascent tracking system is stabilized within the given uncertainty boundary values.The feasible bounds of uncertainty is broadened compared with Integrated Guidance and Control algorithm.Compared with Robust Gain-Scheduling Control method,the robustness to the engine parameters are greatly improved and the control variable is smoother.展开更多
In this paper,some kinds of linear and nonlinear tracking-differentiators are designed by using suitable exponent functions instead of switch functions,and the stability of these tracking-differentiators is proved.Fro...In this paper,some kinds of linear and nonlinear tracking-differentiators are designed by using suitable exponent functions instead of switch functions,and the stability of these tracking-differentiators is proved.From the result of simulations,it is manifest that the tracking speeds of these kinds of linear and nonlinear tracking-differentiators are very high,and their design procedures are simple.展开更多
Since the quadruped robot possesses predominant environmental adaptability,it is expected to be employed in nature environments. In some situations,such as ice surface and tight space,the quadruped robot is required t...Since the quadruped robot possesses predominant environmental adaptability,it is expected to be employed in nature environments. In some situations,such as ice surface and tight space,the quadruped robot is required to lower the height of center of gravity( COG) to enhance the stability and maneuverability. To properly handle these situations,a quadruped controller based on the central pattern generator( CPG) model,the discrete tracking differentiator( TD) and proportional-derivative( PD) sub-controllers is presented. The CPG is used to generate basic rhythmic motion for the quadruped robot. The discrete TD is not only creatively employed to implement the transition between two different rhythmic medium values of the CPG which results in the adjustment of the height of COG of the quadruped robot,but also modified to control the transition duration which enables the quadruped robot to achieve the stable transition. Additionally,two specific PD sub-controllers are constructed to adjust the oscillation amplitude of the CPG,so as to avoid the severe deviation in the transverse direction during transition locomotion. Finally,the controller is validated on a quadruped model. A tunnel with variable height is built for the quadruped model to travel through. The simulation demonstrates the severe deviation without the PD sub-controllers,and the reduced deviation with the PD sub-controllers.展开更多
A modified tracking differentiator is proposed. Firstly, a nonlinear odd exponent continuous function is adopted which is only stable at one equilibrium point and proved the global asymptotic stability of the modified...A modified tracking differentiator is proposed. Firstly, a nonlinear odd exponent continuous function is adopted which is only stable at one equilibrium point and proved the global asymptotic stability of the modified tracking differentiator by select a Lyapunov function. Through combining of the nonlinear and linear function properly, it can be sure that the state converges to the equilibrium point with high speed automatically no matter that the state was far away from the equilibrium point or near to it, and it can prevent the chattering.?Simulation results show that the modified tracking differentiator tracking results?are?superior to the classical nonlinear tracking differentiator, and the response?of state variables tracking differentiator estimated?is?almost coincide with the real state of the variables of the given system.展开更多
One of the challenging problems with evolutionary computing algorithms is to maintain the balance between exploration and exploitation capability in order to search global optima.A novel convergence track based adapti...One of the challenging problems with evolutionary computing algorithms is to maintain the balance between exploration and exploitation capability in order to search global optima.A novel convergence track based adaptive differential evolution(CTbADE)algorithm is presented in this research paper.The crossover rate and mutation probability parameters in a differential evolution algorithm have a significant role in searching global optima.A more diverse population improves the global searching capability and helps to escape from the local optima problem.Tracking the convergence path over time helps enhance the searching speed of a differential evolution algorithm for varying problems.An adaptive powerful parameter-controlled sequences utilized learning period-based memory and following convergence track over time are introduced in this paper.The proposed algorithm will be helpful in maintaining the equilibrium between an algorithm’s exploration and exploitation capability.A comprehensive test suite of standard benchmark problems with different natures,i.e.,unimodal/multimodal and separable/non-separable,was used to test the convergence power of the proposed CTbADE algorithm.Experimental results show the significant performance of the CTbADE algorithm in terms of average fitness,solution quality,and convergence speed when compared with standard differential evolution algorithms and a few other commonly used state-of-the-art algorithms,such as jDE,CoDE,and EPSDE algorithms.This algorithm will prove to be a significant addition to the literature in order to solve real time problems and to optimize computationalmodels with a high number of parameters to adjust during the problem-solving process.展开更多
Smweillance system using active tracking camera has no distance limitation of surveillance range compared to supersonic or sound sensors. However, complex motion tracking algorithm requires huge amount of computation,...Smweillance system using active tracking camera has no distance limitation of surveillance range compared to supersonic or sound sensors. However, complex motion tracking algorithm requires huge amount of computation, and it often requires exfmasive DSPs or embedded processors. This paper proposes a novel motion tracking trait based on different image for fast and simple motion tracking. It uses configuration factor to avoid noise and inaccuracy. It reduces the required computation significantly, so as to be implemented on Field Programmable Gate Array(FFGAs ) instead of expensive Digital Signal Processing(DSPs). It also performs calculation for motion estimation in video compression, so it can be easily combined with surveil system with video recording functionality based on video compression. The proposed motion tracking system implemented on Xilinx Vertex-4 FPGA can process 48 frames per second, and operating frequency of motion tracking trait is 100 MHz.展开更多
In this paper, a novel method to model, track control and synchronize the Rossler’s chaotic system is proposed. The fuzzy logical system is used so that the fuzzy inference rule is transferred into a type of variable...In this paper, a novel method to model, track control and synchronize the Rossler’s chaotic system is proposed. The fuzzy logical system is used so that the fuzzy inference rule is transferred into a type of variable coefficient nonlinear ordinary differential equation. Consequently the model of the chaotic system is obtained. Then a fuzzy tracking control and a fuzzy synchronization for chaotic systems is proposed as well. First, a known tracking control for the Rossler’s system is used in this paper. We represent the Rossler’s chaotic and control systems into fuzzy inference rules. Then the variable coefficient nonlinear ordinary differential equation is also got. Simulation results show that such an approach is effective and has a high precision.展开更多
Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed contr...Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.展开更多
Differential signals are key in control engineering as they anticipate future behavior of process variables and therefore are critical in formulating control laws such as proportional-integral-derivative(PID).The prac...Differential signals are key in control engineering as they anticipate future behavior of process variables and therefore are critical in formulating control laws such as proportional-integral-derivative(PID).The practical challenge,however,is to extract such signals from noisy measurements and this difficulty is addressed first by J.Han in the form of linear and nonlinear tracking differentiator(TD).While improvements were made,TD did not completely resolve the conflict between the noise sensitivity and the accuracy and timeliness of the differentiation.The two approaches proposed in this paper start with the basic linear TD,but apply iterative learning mechanism to the historical data in a moving window(MW),to form two new iterative learning tracking differentiators(IL-TD):one is a parallel IL-TD using an iterative ladder network structure which is implementable in analog circuits;the other a serial IL-TD which is implementable digitally on any computer platform.Both algorithms are validated in simulations which show that the proposed two IL-TDs have better tracking differentiation and de-noise performance compared to the existing linear TD.展开更多
Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apat...Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.61627810, 61790562 and 61403096)。
文摘The large-range uncertainties of specific impulse,mass flow per second,aerodynamic coefficients and atmospheric density during rapid turning in solid launch vehicles(SLVs) ascending leads to the deviation of the actual trajectory from the reference one.One of the traditional trajectory tracking methods is to observe the uncertainties by Extended State Observer(ESO) and then modify the control commands.However,ESO cannot accurately estimate the uncertainties when the uncertainty ranges are large,which reduces the guidance accuracy.This paper introduces differential inclusion(DI) and designs a controller to solve the large-range parameter uncertainties problem.When above uncertainties have large ranges,it can be combined with the ascent dynamic equation and described as a DI system in the mathematical form of a set.If the DI system is stabilized,all the subsets are stabilized.Different from the traditional controllers,the parameters of the designed controller are calculated by the uncertain boundaries.Therefore,the controller can solve the problem of large-range parameter uncertainties of in ascending.Firstly,the ascent deviation system is obtained by linearization along the reference trajectory.The trajectory tracking system with engine parameters and aerodynamic uncertainties is described as an ascent DI system with respect to state deviation,which is called DI system.A DI adaptive saturation tracking controller(DIAST) is proposed to stabilize the DI system.Secondly,an improved barrier Lyapunov function(named time-varying tangent-log barrier Lyapunov function) is proposed to constrain the state deviations.Compared with traditional barrier Lyapunov function,it can dynamically adjust the boundary of deviation convergence,which improve the convergence rate and accuracy of altitude,velocity and LTIA deviation.In addition,the correction amplitudes of angle of attack(AOA) and angle of sideslip(AOS) need to be limited in order to guarantee that the overload constraint is not violated during actual flight.In this paper,a fixed time adaptive saturation compensation auxiliary system is designed to shorten the saturation time and accelerate the convergence rate,which eliminates the adverse effects caused by the saturation.Finally,it is proved that the state deviations are ultimately uniformly bounded under the action of DIAST controller.Simulation results show that the DI ascent tracking system is stabilized within the given uncertainty boundary values.The feasible bounds of uncertainty is broadened compared with Integrated Guidance and Control algorithm.Compared with Robust Gain-Scheduling Control method,the robustness to the engine parameters are greatly improved and the control variable is smoother.
基金Supported by the National Natural Science Foundation of China (6 0 1 740 2 1 ) and Tianjin Key NaturalScience Foundation(0 1 3 80 0 71 1 )
文摘In this paper,some kinds of linear and nonlinear tracking-differentiators are designed by using suitable exponent functions instead of switch functions,and the stability of these tracking-differentiators is proved.From the result of simulations,it is manifest that the tracking speeds of these kinds of linear and nonlinear tracking-differentiators are very high,and their design procedures are simple.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61375101)
文摘Since the quadruped robot possesses predominant environmental adaptability,it is expected to be employed in nature environments. In some situations,such as ice surface and tight space,the quadruped robot is required to lower the height of center of gravity( COG) to enhance the stability and maneuverability. To properly handle these situations,a quadruped controller based on the central pattern generator( CPG) model,the discrete tracking differentiator( TD) and proportional-derivative( PD) sub-controllers is presented. The CPG is used to generate basic rhythmic motion for the quadruped robot. The discrete TD is not only creatively employed to implement the transition between two different rhythmic medium values of the CPG which results in the adjustment of the height of COG of the quadruped robot,but also modified to control the transition duration which enables the quadruped robot to achieve the stable transition. Additionally,two specific PD sub-controllers are constructed to adjust the oscillation amplitude of the CPG,so as to avoid the severe deviation in the transverse direction during transition locomotion. Finally,the controller is validated on a quadruped model. A tunnel with variable height is built for the quadruped model to travel through. The simulation demonstrates the severe deviation without the PD sub-controllers,and the reduced deviation with the PD sub-controllers.
文摘A modified tracking differentiator is proposed. Firstly, a nonlinear odd exponent continuous function is adopted which is only stable at one equilibrium point and proved the global asymptotic stability of the modified tracking differentiator by select a Lyapunov function. Through combining of the nonlinear and linear function properly, it can be sure that the state converges to the equilibrium point with high speed automatically no matter that the state was far away from the equilibrium point or near to it, and it can prevent the chattering.?Simulation results show that the modified tracking differentiator tracking results?are?superior to the classical nonlinear tracking differentiator, and the response?of state variables tracking differentiator estimated?is?almost coincide with the real state of the variables of the given system.
基金This work was supported by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia,which funded this research work through project number 959.
文摘One of the challenging problems with evolutionary computing algorithms is to maintain the balance between exploration and exploitation capability in order to search global optima.A novel convergence track based adaptive differential evolution(CTbADE)algorithm is presented in this research paper.The crossover rate and mutation probability parameters in a differential evolution algorithm have a significant role in searching global optima.A more diverse population improves the global searching capability and helps to escape from the local optima problem.Tracking the convergence path over time helps enhance the searching speed of a differential evolution algorithm for varying problems.An adaptive powerful parameter-controlled sequences utilized learning period-based memory and following convergence track over time are introduced in this paper.The proposed algorithm will be helpful in maintaining the equilibrium between an algorithm’s exploration and exploitation capability.A comprehensive test suite of standard benchmark problems with different natures,i.e.,unimodal/multimodal and separable/non-separable,was used to test the convergence power of the proposed CTbADE algorithm.Experimental results show the significant performance of the CTbADE algorithm in terms of average fitness,solution quality,and convergence speed when compared with standard differential evolution algorithms and a few other commonly used state-of-the-art algorithms,such as jDE,CoDE,and EPSDE algorithms.This algorithm will prove to be a significant addition to the literature in order to solve real time problems and to optimize computationalmodels with a high number of parameters to adjust during the problem-solving process.
基金sponsored by the MKE(The Ministry of Knowledge Economy,Korea),the ITRC(Information Technology Research Center)support program(NIPA-2009-(C1090-0902-0007))the System Semiconductor Industry Development Center,Human Resource Development Project for IT SOC Architecture
文摘Smweillance system using active tracking camera has no distance limitation of surveillance range compared to supersonic or sound sensors. However, complex motion tracking algorithm requires huge amount of computation, and it often requires exfmasive DSPs or embedded processors. This paper proposes a novel motion tracking trait based on different image for fast and simple motion tracking. It uses configuration factor to avoid noise and inaccuracy. It reduces the required computation significantly, so as to be implemented on Field Programmable Gate Array(FFGAs ) instead of expensive Digital Signal Processing(DSPs). It also performs calculation for motion estimation in video compression, so it can be easily combined with surveil system with video recording functionality based on video compression. The proposed motion tracking system implemented on Xilinx Vertex-4 FPGA can process 48 frames per second, and operating frequency of motion tracking trait is 100 MHz.
文摘In this paper, a novel method to model, track control and synchronize the Rossler’s chaotic system is proposed. The fuzzy logical system is used so that the fuzzy inference rule is transferred into a type of variable coefficient nonlinear ordinary differential equation. Consequently the model of the chaotic system is obtained. Then a fuzzy tracking control and a fuzzy synchronization for chaotic systems is proposed as well. First, a known tracking control for the Rossler’s system is used in this paper. We represent the Rossler’s chaotic and control systems into fuzzy inference rules. Then the variable coefficient nonlinear ordinary differential equation is also got. Simulation results show that such an approach is effective and has a high precision.
基金Supported by the National High Technology Research and Development Programme of China(No.2015AA8082065)the National Natural Science Foundation of China(No.61205143)
文摘Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.
基金supported by National Natural Science Foundation of China(61773170,62173151)the Natural Science Foundation of Guangdong Province(2023A1515010949,2021A1515011850).
文摘Differential signals are key in control engineering as they anticipate future behavior of process variables and therefore are critical in formulating control laws such as proportional-integral-derivative(PID).The practical challenge,however,is to extract such signals from noisy measurements and this difficulty is addressed first by J.Han in the form of linear and nonlinear tracking differentiator(TD).While improvements were made,TD did not completely resolve the conflict between the noise sensitivity and the accuracy and timeliness of the differentiation.The two approaches proposed in this paper start with the basic linear TD,but apply iterative learning mechanism to the historical data in a moving window(MW),to form two new iterative learning tracking differentiators(IL-TD):one is a parallel IL-TD using an iterative ladder network structure which is implementable in analog circuits;the other a serial IL-TD which is implementable digitally on any computer platform.Both algorithms are validated in simulations which show that the proposed two IL-TDs have better tracking differentiation and de-noise performance compared to the existing linear TD.
基金supported by National Natural Science Foundation of China(Grant Nos.42025301,41730213 and 41890831)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0702)+2 种基金Hong Kong RGC GRF(Grant No.17307918)HKU Internal Grants for Member of Chinese Academy of Sciences(Grant No.102009906)for Distinguished Research Achievement Award(Grant No.102010100)。
文摘Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.