In the early Proterozoic the Li'eryu Formation and Dashiqiao Formation of eastern Liaoning province, China, there are distributed Mg-rich carbonate rock formations, in which large to superlarge deposits of boron, ...In the early Proterozoic the Li'eryu Formation and Dashiqiao Formation of eastern Liaoning province, China, there are distributed Mg-rich carbonate rock formations, in which large to superlarge deposits of boron, magnesite, talc, Xiuyan jade etc. occur. The formation of these magnesian nonmetallic deposits was related to early Proterozoic evaporates; then these deposits underwent reworking of regional metamorphism and hydrothermal metasomatism during the Lüliang orogeny and tectono-magmatism during the Indosinian-Yanshanian. Among other things, the Mg-rich carbonates formations, minerogenetic structures and ore-forming fluids played a controlling role in the formation of the mineral deposits. Therefore, it can be concluded that the mineral deposits are products of combined processes of the coupling of ore source field, fluid field, thermal field (energy field) and stress field under certain time-space conditions in the early Proterozoic and the late-stage superimposed reworking of tectono-magmatism.展开更多
Owing to the internal relationship between material sources or mineralization ways and the difference ofmineralization micro-environments or the change of constraints. certain types of nonmetallic mineral depositsare ...Owing to the internal relationship between material sources or mineralization ways and the difference ofmineralization micro-environments or the change of constraints. certain types of nonmetallic mineral depositsare regularly formed either simultaneously or in successive order under the control of certain association ofmineralization processes in a certain geotectonic environment, thus forming a minerogenetic series ofnonmetallic mineral deposits. The geological setting that controls the formation of minerogenetic series is mosttruly recorded in ore-bearing formations. while the mineralization processes which are associated or surely suc-cessive are the indispensable prerequisite for the formation of the various mineral deposits of a minerogeneticseries. Therefore, the minerogenetic series of nonmetallic mineral deposits can be classified according tomineral-bearing formations and mineralization processes. Based on available data. 13 minerogenetic series aredistinguished in China. The study of minerogenetic series may not only result in the enrichment of the theory ofmineral deposits but also help direct mineral prospecting and give guidance in the integrated development andutillization of mineral resources.展开更多
基金supported by the Foundation for Development of Geological Science and Technology of the former Ministry of Geology and Mineral Resources of China grant HY979830
文摘In the early Proterozoic the Li'eryu Formation and Dashiqiao Formation of eastern Liaoning province, China, there are distributed Mg-rich carbonate rock formations, in which large to superlarge deposits of boron, magnesite, talc, Xiuyan jade etc. occur. The formation of these magnesian nonmetallic deposits was related to early Proterozoic evaporates; then these deposits underwent reworking of regional metamorphism and hydrothermal metasomatism during the Lüliang orogeny and tectono-magmatism during the Indosinian-Yanshanian. Among other things, the Mg-rich carbonates formations, minerogenetic structures and ore-forming fluids played a controlling role in the formation of the mineral deposits. Therefore, it can be concluded that the mineral deposits are products of combined processes of the coupling of ore source field, fluid field, thermal field (energy field) and stress field under certain time-space conditions in the early Proterozoic and the late-stage superimposed reworking of tectono-magmatism.
文摘Owing to the internal relationship between material sources or mineralization ways and the difference ofmineralization micro-environments or the change of constraints. certain types of nonmetallic mineral depositsare regularly formed either simultaneously or in successive order under the control of certain association ofmineralization processes in a certain geotectonic environment, thus forming a minerogenetic series ofnonmetallic mineral deposits. The geological setting that controls the formation of minerogenetic series is mosttruly recorded in ore-bearing formations. while the mineralization processes which are associated or surely suc-cessive are the indispensable prerequisite for the formation of the various mineral deposits of a minerogeneticseries. Therefore, the minerogenetic series of nonmetallic mineral deposits can be classified according tomineral-bearing formations and mineralization processes. Based on available data. 13 minerogenetic series aredistinguished in China. The study of minerogenetic series may not only result in the enrichment of the theory ofmineral deposits but also help direct mineral prospecting and give guidance in the integrated development andutillization of mineral resources.