Let R be a commutative ring and U(R)the multiplicative group of unit elements of R.In 2012,Khashyarmanesh et al.defined the generalized unit and unitary Cayley graph,T(R,G,S),corresponding to a multiplicative subgroup...Let R be a commutative ring and U(R)the multiplicative group of unit elements of R.In 2012,Khashyarmanesh et al.defined the generalized unit and unitary Cayley graph,T(R,G,S),corresponding to a multiplicative subgroup G of U(R)and a nonempty subset S of G with S^(-1)={s^(-1)|s∈S}■S,asthegraphwithvertexsetR and two distinct vertices x and y being adjacent if and only if there exists s∈S such that x+sy∈G.In this paper,we characterize all Artinian rings R for which T(R,U(R),S)is projective.This leads us to determine all Artinian rings whose unit graphs,unitary Cayley graphs and co-maximal graphs are projective.In addition,we prove that for an Artinian ring R for which T(R,U(R),S)has finite nonorientable genus,R must be a finite ring.Finally,it is proved that for a given positive integer k,the number of finite rings R for which T(R,U(R),S)has nonorientable genus k is finite.展开更多
In this paper, we show that the nonorientable genus of Cm + Cn, the join of two cycles Cm and Cn, is equal to [((m-2)(n-2))/2] if m = 3, n ≡ 1 (mod 2), or m ≥ 4, n ≥ 4, (m, n) (4, 4). We determine that...In this paper, we show that the nonorientable genus of Cm + Cn, the join of two cycles Cm and Cn, is equal to [((m-2)(n-2))/2] if m = 3, n ≡ 1 (mod 2), or m ≥ 4, n ≥ 4, (m, n) (4, 4). We determine that the nonorientable genus of C4 +C4 is 3, and that the nonorientable genus of C3 +Cn is n/2 if n ≡ 0 (mod 2). Our results show that a minimum nonorientable genus embedding of the complete bipartite graph Km,n cannot be extended to an embedding of the join of two cycles without increasing the genus of the surface.展开更多
文摘Let R be a commutative ring and U(R)the multiplicative group of unit elements of R.In 2012,Khashyarmanesh et al.defined the generalized unit and unitary Cayley graph,T(R,G,S),corresponding to a multiplicative subgroup G of U(R)and a nonempty subset S of G with S^(-1)={s^(-1)|s∈S}■S,asthegraphwithvertexsetR and two distinct vertices x and y being adjacent if and only if there exists s∈S such that x+sy∈G.In this paper,we characterize all Artinian rings R for which T(R,U(R),S)is projective.This leads us to determine all Artinian rings whose unit graphs,unitary Cayley graphs and co-maximal graphs are projective.In addition,we prove that for an Artinian ring R for which T(R,U(R),S)has finite nonorientable genus,R must be a finite ring.Finally,it is proved that for a given positive integer k,the number of finite rings R for which T(R,U(R),S)has nonorientable genus k is finite.
基金Supported by National Natural Science Foundation of China(Grant No.11171114)
文摘In this paper, we show that the nonorientable genus of Cm + Cn, the join of two cycles Cm and Cn, is equal to [((m-2)(n-2))/2] if m = 3, n ≡ 1 (mod 2), or m ≥ 4, n ≥ 4, (m, n) (4, 4). We determine that the nonorientable genus of C4 +C4 is 3, and that the nonorientable genus of C3 +Cn is n/2 if n ≡ 0 (mod 2). Our results show that a minimum nonorientable genus embedding of the complete bipartite graph Km,n cannot be extended to an embedding of the join of two cycles without increasing the genus of the surface.