Computing the eigenvalue of smallest modulus and its corresponding eigneveclor of an irreducible nonsingular M-matrix A is considered, It is shown that if the entries of A are known with high relative accuracy, its ei...Computing the eigenvalue of smallest modulus and its corresponding eigneveclor of an irreducible nonsingular M-matrix A is considered, It is shown that if the entries of A are known with high relative accuracy, its eigenvalue of smallest modulus and each component of the corresponding eigenvector will be determined to much higher accuracy than the standard perturbation theory suggests. An algorithm is presented to compute them with a small componentwise backward error, which is consistent with the perturbation results.展开更多
A direct algorithm is proposed by which one can distinguish whether a matrix is an M-matrix (or H-matrix) or not quickly and effectively. Numerical examples show that it is effective and convincible to distinguish M-m...A direct algorithm is proposed by which one can distinguish whether a matrix is an M-matrix (or H-matrix) or not quickly and effectively. Numerical examples show that it is effective and convincible to distinguish M-matrix (or H-matrix) by using the algorithm.展开更多
文摘Computing the eigenvalue of smallest modulus and its corresponding eigneveclor of an irreducible nonsingular M-matrix A is considered, It is shown that if the entries of A are known with high relative accuracy, its eigenvalue of smallest modulus and each component of the corresponding eigenvector will be determined to much higher accuracy than the standard perturbation theory suggests. An algorithm is presented to compute them with a small componentwise backward error, which is consistent with the perturbation results.
基金Foundation item: This work is supported by the Science Foundations of the Education Department of Yunnan Province (03Z169A)the Science Foundatons of Yunnan University (2003Z013B).
文摘A direct algorithm is proposed by which one can distinguish whether a matrix is an M-matrix (or H-matrix) or not quickly and effectively. Numerical examples show that it is effective and convincible to distinguish M-matrix (or H-matrix) by using the algorithm.