针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化...针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Lojasiewicz不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。展开更多
For a general normed vector space,a special optimal value function called a maximal time function is considered.This covers the farthest distance function as a special case,and has a close relationship with the smalle...For a general normed vector space,a special optimal value function called a maximal time function is considered.This covers the farthest distance function as a special case,and has a close relationship with the smallest enclosing ball problem.Some properties of the maximal time function are proven,including the convexity,the lower semicontinuity,and the exact characterizations of its subdifferential formulas.展开更多
The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on...The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments.展开更多
Nonsmooth finite-time stabilizing control laws have been developed for the double integrator system. The objective of this paper is to further explore the finite-time tracking control problem of a general form of unce...Nonsmooth finite-time stabilizing control laws have been developed for the double integrator system. The objective of this paper is to further explore the finite-time tracking control problem of a general form of uncertain secondorder affine nonlinear system with the new forms of terminal sliding mode (TSM). Discontinuous and continuous finite-time controllers are also developed respectively without the singularity problem. Complete robustness can be acquired with the former, and enhanced robustness compared with the conventional boundary layer method can be expressed as explicit bounded function with the latter. Simulation results on the stabilizing and tracking problems are presented to demonstrate the effectiveness of the control algorithms.展开更多
Using K-T optimality condition of nonsmooth optimization, we establish two equivalent systems of the nonsmooth equations for the constrained minimax problem directly. Then generalized Newton methods are applied to so...Using K-T optimality condition of nonsmooth optimization, we establish two equivalent systems of the nonsmooth equations for the constrained minimax problem directly. Then generalized Newton methods are applied to solve these systems of the nonsmooth equations. Thus a new approach to solving the constrained minimax problem is developed.展开更多
In this paper, the existence and nonexistence of solutions to a class of quasilinear elliptic equations with nonsmooth functionals are discussed, and the results obtained are applied to quasilinear SchrSdinger equatio...In this paper, the existence and nonexistence of solutions to a class of quasilinear elliptic equations with nonsmooth functionals are discussed, and the results obtained are applied to quasilinear SchrSdinger equations with negative parameter which arose from the study of self-channeling of high-power ultrashort laser in matter.展开更多
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the mult...In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.展开更多
In this paper, we define a functional optimization problem corresponding to smooth functions which its optimal solution is first derivative of these functions in a domain. These functional optimization problems are ap...In this paper, we define a functional optimization problem corresponding to smooth functions which its optimal solution is first derivative of these functions in a domain. These functional optimization problems are applied for non-smooth functions which by solving these problems we obtain a kind of generalized first derivatives. For this purpose, a linear programming problem corresponding functional optimization problem is obtained which their optimal solutions give the approximate generalized first derivative. We show the efficiency of our approach by obtaining derivative and generalized derivative of some smooth and nonsmooth functions respectively in some illustrative examples.展开更多
Numerical methods for the solution of nonsmooth equations are studied. A new subdifferential for a locally Lipschitzian function is proposed. Based on this subdifferential, Newton methods for solving nonsmooth equatio...Numerical methods for the solution of nonsmooth equations are studied. A new subdifferential for a locally Lipschitzian function is proposed. Based on this subdifferential, Newton methods for solving nonsmooth equations are developed and their convergence is shown. Since this subdifferential is easy to be computed, the present Newton methods can be executed easily in some applications.展开更多
Under some assumptions, the solution set of a nonlinear complementarity problem coincides with the set of local minima of the corresponding minimization problem. This paper uses a family of new merit functions to deal...Under some assumptions, the solution set of a nonlinear complementarity problem coincides with the set of local minima of the corresponding minimization problem. This paper uses a family of new merit functions to deal with nonlinear complementarity problem where the underlying function is assumed to be a continuous but not necessarily locally Lipschitzian map and gives a descent algorithm for solving the nonsmooth continuous complementarity problems. In addition, the global convergence of the derivative free descent algorithm is also proved.展开更多
In this paper, we present a nonmonotone algorithm for solving nonsmooth composite optimization problems. The objective function of these problems is composited by a nonsmooth convex function and a differentiable funct...In this paper, we present a nonmonotone algorithm for solving nonsmooth composite optimization problems. The objective function of these problems is composited by a nonsmooth convex function and a differentiable function. The method generates the search directions by solving quadratic programming successively, and makes use of the nonmonotone line search instead of the usual Armijo-type line search. Global convergence is proved under standard assumptions. Numerical results are given.展开更多
In this paper,we present a successive quadratic programming(SQP)method for minimizing a class of nonsmooth functions,which are the sum of a convex function and a nonsmooth composite function.The method generates new i...In this paper,we present a successive quadratic programming(SQP)method for minimizing a class of nonsmooth functions,which are the sum of a convex function and a nonsmooth composite function.The method generates new iterations by using the Armijo-type line search technique after having found the search directions.Global convergence property is established under mild assumptions.Numerical results are also offered.展开更多
A kind of nondecreasing subgradient algorithm with appropriate stopping rule has been proposed for nonsmooth constrained minimization problem. The dual theory is invoked in dealing with the stopping rule and general g...A kind of nondecreasing subgradient algorithm with appropriate stopping rule has been proposed for nonsmooth constrained minimization problem. The dual theory is invoked in dealing with the stopping rule and general global minimiizing algorithm is employed as a subroutine of the algorithm. The method is expected to tackle a large class of nonsmooth constrained minimization problem.展开更多
By means of Lagrange duality of Hill's maximum plastic work principle theory of the convex program, a dual problem under Mises' yield condition has been derived and whereby a non-differentiable convex optimization m...By means of Lagrange duality of Hill's maximum plastic work principle theory of the convex program, a dual problem under Mises' yield condition has been derived and whereby a non-differentiable convex optimization model for the limit analysis is developed. With this model, it is not necessary to linearize the yield condition and its discrete form becomes a minimization problem of the sum of Euclidean norms subject to linear constraints. Aimed at resolving the non-differentiability of Euclidean norms, a smoothing algorithm for the limit analysis of perfect-plastic continuum media is proposed. Its efficiency is demonstrated by computing the limit load factor and the collapse state for some plane stress and plain strain problems.展开更多
文摘针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Lojasiewicz不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。
基金supported by the National Natural Science Foundation of China(11201324)the Fok Ying Tuny Education Foundation(141114)the Sichuan Technology Program(2022ZYD0011,2022NFSC1852).
文摘For a general normed vector space,a special optimal value function called a maximal time function is considered.This covers the farthest distance function as a special case,and has a close relationship with the smallest enclosing ball problem.Some properties of the maximal time function are proven,including the convexity,the lower semicontinuity,and the exact characterizations of its subdifferential formulas.
基金supported by the National Natural Science Foundation of China(62176218,62176027)the Fundamental Research Funds for the Central Universities(XDJK2020TY003)the Funds for Chongqing Talent Plan(cstc2024ycjh-bgzxm0082)。
文摘The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments.
基金the National Natural Science Foundation of China (No.60674061).
文摘Nonsmooth finite-time stabilizing control laws have been developed for the double integrator system. The objective of this paper is to further explore the finite-time tracking control problem of a general form of uncertain secondorder affine nonlinear system with the new forms of terminal sliding mode (TSM). Discontinuous and continuous finite-time controllers are also developed respectively without the singularity problem. Complete robustness can be acquired with the former, and enhanced robustness compared with the conventional boundary layer method can be expressed as explicit bounded function with the latter. Simulation results on the stabilizing and tracking problems are presented to demonstrate the effectiveness of the control algorithms.
文摘Using K-T optimality condition of nonsmooth optimization, we establish two equivalent systems of the nonsmooth equations for the constrained minimax problem directly. Then generalized Newton methods are applied to solve these systems of the nonsmooth equations. Thus a new approach to solving the constrained minimax problem is developed.
基金supported by NSF of China(11201488),supported by NSF of China(11371146)Hunan Provincial Natural Science Foundation of China(14JJ4002)
文摘In this paper, the existence and nonexistence of solutions to a class of quasilinear elliptic equations with nonsmooth functionals are discussed, and the results obtained are applied to quasilinear SchrSdinger equations with negative parameter which arose from the study of self-channeling of high-power ultrashort laser in matter.
文摘In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.
文摘In this paper, we define a functional optimization problem corresponding to smooth functions which its optimal solution is first derivative of these functions in a domain. These functional optimization problems are applied for non-smooth functions which by solving these problems we obtain a kind of generalized first derivatives. For this purpose, a linear programming problem corresponding functional optimization problem is obtained which their optimal solutions give the approximate generalized first derivative. We show the efficiency of our approach by obtaining derivative and generalized derivative of some smooth and nonsmooth functions respectively in some illustrative examples.
文摘Numerical methods for the solution of nonsmooth equations are studied. A new subdifferential for a locally Lipschitzian function is proposed. Based on this subdifferential, Newton methods for solving nonsmooth equations are developed and their convergence is shown. Since this subdifferential is easy to be computed, the present Newton methods can be executed easily in some applications.
基金Supported by the National Science foundation of China(10671126, 40771095)the Key Project for Fundamental Research of STCSM(06JC14057)+1 种基金Shanghai Leading Academic Discipline Project(S30501)the Innovation Fund Project for Graduate Students of Shanghai(JWCXSL0801)
文摘Under some assumptions, the solution set of a nonlinear complementarity problem coincides with the set of local minima of the corresponding minimization problem. This paper uses a family of new merit functions to deal with nonlinear complementarity problem where the underlying function is assumed to be a continuous but not necessarily locally Lipschitzian map and gives a descent algorithm for solving the nonsmooth continuous complementarity problems. In addition, the global convergence of the derivative free descent algorithm is also proved.
文摘In this paper, we present a nonmonotone algorithm for solving nonsmooth composite optimization problems. The objective function of these problems is composited by a nonsmooth convex function and a differentiable function. The method generates the search directions by solving quadratic programming successively, and makes use of the nonmonotone line search instead of the usual Armijo-type line search. Global convergence is proved under standard assumptions. Numerical results are given.
文摘In this paper,we present a successive quadratic programming(SQP)method for minimizing a class of nonsmooth functions,which are the sum of a convex function and a nonsmooth composite function.The method generates new iterations by using the Armijo-type line search technique after having found the search directions.Global convergence property is established under mild assumptions.Numerical results are also offered.
文摘A kind of nondecreasing subgradient algorithm with appropriate stopping rule has been proposed for nonsmooth constrained minimization problem. The dual theory is invoked in dealing with the stopping rule and general global minimiizing algorithm is employed as a subroutine of the algorithm. The method is expected to tackle a large class of nonsmooth constrained minimization problem.
基金Project supported by the National Natural Science Foundation of China (Nos.10572031, 10332010)
文摘By means of Lagrange duality of Hill's maximum plastic work principle theory of the convex program, a dual problem under Mises' yield condition has been derived and whereby a non-differentiable convex optimization model for the limit analysis is developed. With this model, it is not necessary to linearize the yield condition and its discrete form becomes a minimization problem of the sum of Euclidean norms subject to linear constraints. Aimed at resolving the non-differentiability of Euclidean norms, a smoothing algorithm for the limit analysis of perfect-plastic continuum media is proposed. Its efficiency is demonstrated by computing the limit load factor and the collapse state for some plane stress and plain strain problems.