Let X be a Banach space, S(X) be the unit sphere of X, φ be a function: S(X)→ S(X *) such that φ(x)∈ x, and v φ(ε) =inf 1-12x+y: x,y∈S(X), and 〈φ(x), x-y 〉≥ε, 0≤ε≤2, whe...Let X be a Banach space, S(X) be the unit sphere of X, φ be a function: S(X)→ S(X *) such that φ(x)∈ x, and v φ(ε) =inf 1-12x+y: x,y∈S(X), and 〈φ(x), x-y 〉≥ε, 0≤ε≤2, where x is the set of norm 1 supporting functionals of S(X) at x. A geometric concept, modulus of V convexity V(ε)= sup {V φ(ε), for all φ: S(X)→S(X *)}, is introduced; the properties of V(ε) and the relationship between V(ε) and other geometric concepts are discussed. The main result is that V12>0 implies normal structure.展开更多
文摘Let X be a Banach space, S(X) be the unit sphere of X, φ be a function: S(X)→ S(X *) such that φ(x)∈ x, and v φ(ε) =inf 1-12x+y: x,y∈S(X), and 〈φ(x), x-y 〉≥ε, 0≤ε≤2, where x is the set of norm 1 supporting functionals of S(X) at x. A geometric concept, modulus of V convexity V(ε)= sup {V φ(ε), for all φ: S(X)→S(X *)}, is introduced; the properties of V(ε) and the relationship between V(ε) and other geometric concepts are discussed. The main result is that V12>0 implies normal structure.