Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function...Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function and whole-plant level C cycling.CO_(2)elevation and nitrogen(N)deposition,which are two major environmental issues worldwide,aff ect plant photosynthetic C assimilation and C release in forest ecosystems.However,information regarding the eff ect of CO_(2)elevation and N deposition on NSC storage in diff erent organs remains limited,especially regarding the trade-off between growth and NSC reserves.Therefore,here we analyzed the variations in the NSC storage in diff erent organs of Chinese fi r(Cunninghamia lanceolata)under CO_(2)elevation and N addition and found that NSC concentrations and contents in all organs of Chinese fi r saplings increased remarkably under CO_(2)elevation.However,N addition induced diff erential accumulation of NSC among various organs.Specifi cally,N addition decreased the NSC concentrations of needles,branches,stems,and fi ne roots,but increased the NSC contents of branches and coarse roots.The increase in the NSC contents of roots was more pronounced than that in the NSC content of aboveground organs under CO_(2)elevation.The role of N addition in the increase in the structural biomass of aboveground organs was greater than that in the increase in the structural biomass of roots.This result indicated that a diff erent tradeoff between growth and NSC storage occurred to alleviate resource limitations under CO_(2)elevation and N addition and highlights the importance of separating biomass into structural biomass and NSC reserves when investigating the eff ects of environmental change on biomass allocation.展开更多
Crop yield and quality are often limited by the amount of phosphate fertilizer added to infertile soils,a key limiting factor for sustainable development in modern agriculture.The polyphosphate kinase(ppk)gene-express...Crop yield and quality are often limited by the amount of phosphate fertilizer added to infertile soils,a key limiting factor for sustainable development in modern agriculture.The polyphosphate kinase(ppk)gene-expressing transgenic rice with a single-copy line(ETRS)is constructed to improve phosphate fertilizer utilization efficiency for phosphorus resource conservation.To investigate the potential mechanisms of the increased biomass in ETRS in low phosphate culture,ETRS was cultivated in a low inorganic phosphate(Pi)culture medium(15μmol/L Pi,LP)and a normal Pi culture medium(300μmol/L Pi,CP),respectively.After 89 d of cultivation in different concentrations of phosphate culture media,the total phosphorus,polyphosphate(polyP),biomass,photosynthetic rate,nonstructural carbohydrate(NSC)contents,related enzyme activities,and related gene expression levels were analyzed.The results showed that ETRS had a high polyP amount to promote the photosynthetic rate in LP,and its biomass was almost the same as the wild type(WT)in CP.The NSC content of ETRS in LP was higher than that of WT in LP,but slightly lower than that of WT in CP.PolyP notably promoted the sucrose phosphate synthase activities of ETRS and significantly down-regulated the expression levels of sucrose transporter genes(OsSUT3 and OsSUT4),resulting in inhibiting the transport of sucrose from shoot to root in ETRS.It was concluded that polyP can stimulate the synthesis of NSCs in LP,which improved the growth of ETRS and triggered the biological activities of ETRS to save phosphate fertilizer.Our study provides a new way to improve the utilization rate of phosphate fertilizer in rice production.展开更多
BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy optio...BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy options are still lacking.Our group identified hepatitis C virus nonstructural protein 3-transactivated protein 1(NS3TP1) by suppressive subtractive hybridization and bioinformatics analysis,but its role in diseases including hepatic fibrosis remains undefined.Therefore,additional studies on the function of NS3TP1 in hepatic fibrosis are urgently needed to provide new targets for treatment.AIM To elucidate the mechanism of NS3TP1 in hepatic fibrosis and the regulatory effects of calcitriol on NS3TP1.METHODS Twenty-four male C57BL/6 mice were randomized and separated into three groups,comprising the normal,fibrosis,and calcitriol treatment groups,and liver fibrosis was modeled by carbon tetrachloride(CCl4).To evaluate the level of hepatic fibrosis in every group,serological and pathological examinations of the liver were conducted.TGF-β1 was administered to boost the in vitro cultivation of LX-2 cells.NS3TP1,α-smooth muscle actin(α-SMA),collagen I,and collagen Ⅲ in every group were examined using a Western blot and real-time quantitative polymerase chain reaction.The activity of the transforming growth factor beta 1(TGFβ1)/Smad3 and NF-κB signaling pathways in each group of cells transfected with pcDNA-NS3TP1 or siRNA-NS3TP1 was detected.The statistical analysis of the data was performed using the Student’s t test.RESULTS NS3TP1 promoted the activation,proliferation,and differentiation of hepatic stellate cells(HSCs)and enhanced hepatic fibrosis via the TGFβ1/Smad3 and NF-κB signaling pathways,as evidenced by the presence of α-SMA,collagen I,collagen Ⅲ,p-smad3,and p-p65 in LX-2 cells,which were upregulated after NS3TP1 overexpression and downregulated after NS3TP1 interference.The proliferation of HSCs was lowered after NS3TP1 interference and elevated after NS3TP1 overexpression,as shown by the luciferase assay.NS3TP1 inhibited the apoptosis of HSCs.Moreover,both Smad3 and p65 could bind to NS3TP1,and p65 increased the promoter activity of NS3TP1,while NS3TP1 increased the promoter activity of TGFβ1 receptor I,as indicated by coimmunoprecipitation and luciferase assay results.Both in vivo and in vitro,treatment with calcitriol dramatically reduced the expression of NS3TP1.Calcitriol therapy-controlled HSCs activation,proliferation,and differentiation and substantially suppressed CCl4-induced hepatic fibrosis in mice.Furthermore,calcitriol modulated the activities of the above signaling pathways via downregulation of NS3TP1.CONCLUSION Our results suggest that calcitriol may be employed as an adjuvant therapy for hepatic fibrosis and that NS3TP1 is a unique,prospective therapeutic target in hepatic fibrosis.展开更多
Interactions between water and carbon dynamics underlie drought-related tree mortality.While whole-tree water relations have been shown to play a key role in the response to and recovery from drought,the role of nonst...Interactions between water and carbon dynamics underlie drought-related tree mortality.While whole-tree water relations have been shown to play a key role in the response to and recovery from drought,the role of nonstructural carbohydrates(NSC) and how their storage and allocation changes surrounding drought events deserves further attention and is critical for understanding tree survival.Here,we quantified in situ NSC responses of temperate forest trees to the 2016 drought in the northeastern United States.Sugar and starch concentrations were measured in the stemwood of five tree species from 2014 to 2019,which allowed us to monitor NSCs in relation to climatic conditions before,during,and after the natural drought.We found that immediately following the drought,measured stemwood NSC concentrations decreased.However,NSC concentrations rebounded quickly within three years.Notably,trees allocated proportionally more to starch than to sugars following the 2016 drought.In winter 2017,starch comprised 45% of total stemwood stores,whereas starch made up only 1-2% in other years.Further,we modeled and assessed the climatic drivers of total NSC concentrations in the stem.Variation in total NSC concentrations was significantly predicted by the previous year’s temperature,precipitation,and standardized precipitation-evapotranspiration index(SPEI),with stemwood concentrations decreasing following hotter,drier periods and increasing following cooler,wetter periods.Overall,our work provides insight into the climatic drivers of NSC storage and highlights the important role that a tree’s carbon economy may play in its response and recovery to environmental stress.展开更多
Understanding understory seedling regeneration mechanisms is important for the sustainable development of temperate primary forests in the context of increasingly intense climate warming events.The poor regeneration o...Understanding understory seedling regeneration mechanisms is important for the sustainable development of temperate primary forests in the context of increasingly intense climate warming events.The poor regeneration of dominant tree species,however,is one of the biggest challenges it faces at the moment.Especially,the regeneration of the shade-intolerant Quercus mongolica seedling is difficult in primary forests,which contrasts with the extreme abundance of understory seedlings in secondary forests.The mechanism behind the interesting phenomenon is still unknown.This study used in-situ monitoring and nursery-controlled experiment to investigate the survival rate,growth performance,as well as nonstructural carbohydrate (NSC) concentrations and pools of various organ tissues of seedlings for two consecutive years,further analyze the understory light availability and simulate the foliage carbon (C) gain in the secondary and primary forest.Results suggested that seedlings in the secondary forest had greater biomass allocation aboveground,height and specific leaf area (SLA) in summer,which allowed the seedling to survive longer in the canopy closure period.High light availability and positive C gain in early spring and late autumn are key factors affecting the growth and survival of understory seedlings in the secondary forest,whereas seedlings in the primary forest had annual negative carbon gain.Through the growing season,the total NSC concentrations of seedlings gradually decreased,whereas those of seedlings in the secondary forest increased significantly in autumn,and were mainly stored in roots for winter consumption and the following year's summer shade period,which was verified by the nursery-controlled experiment that simulated autumn enhanced light availability improved seedling survival rate and NSC pools.In conclusion,our results revealed the survival trade-off strategies of Quercus mongolica seedlings and highlighted the necessity of high light availability during the spring and autumn phenological periods for shade-intolerant tree seedling recruitment.展开更多
Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate cl...Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.展开更多
To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Tab...To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range.展开更多
Flaviviruses,which include globally impactful pathogens,such as West Nile virus,yellow fever virus,Zika virus,Japanese encephalitis virus,and dengue virus,contribute significantly to human infections.Despite the ongoi...Flaviviruses,which include globally impactful pathogens,such as West Nile virus,yellow fever virus,Zika virus,Japanese encephalitis virus,and dengue virus,contribute significantly to human infections.Despite the ongoing emergence and resurgence of flavivirus-mediated pathogenesis,the absence of specific therapeutic options remains a challenge in the prevention and treatment of flaviviral infections.Through the intricate processes of fusion,transcription,replication,and maturation,the complex interplay of viral and host metabolic interactions affects pathophysiology.Crucial interactions involve metabolic molecules,such as amino acids,glucose,fatty acids,and nucleotides,each playing a pivotal role in the replication and maturation of flaviviruses.These viral-host metabolic molecular interactions hijack and modulate the molecular mechanisms of host metabolism.A comprehensive understanding of these intricate metabolic pathways offers valuable insights,potentially unveiling novel targets for therapeutic interventions against flaviviral pathogenesis.This review emphasizes promising avenues for the development of therapeutic agents that target specific metabolic molecules,such as amino acids,glucose,fatty acids,and nucleotides,which interact with flavivirus replication and are closely linked to the modulation of host metabolism.The clinical limitations of current drugs have prompted the development of new inhibitory strategies for flaviviruses based on an understanding of the molecular interactions between the virus and the host.展开更多
With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components ...With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.展开更多
Extreme heat stress events are becoming more frequent under anticipated climate change,which can have devastating impacts on rice growth and yield.To quantify the effects of short-term heat stress at booting stage on ...Extreme heat stress events are becoming more frequent under anticipated climate change,which can have devastating impacts on rice growth and yield.To quantify the effects of short-term heat stress at booting stage on nonstructural carbohydrates(NSC)remobilization in rice,two varieties(Nanjing 41 and Wuyunjing 24)were subjected to 32/22/27°C(maximum/minimum/mean),36/26/31°C,40/30/35°C,and 44/34/39°C for 2,4 and 6 days in phytotrons at booting stage during 2014 and 2015.Yield and yield components,dry matter partitioning index(DMPI),NSC accumulation and translocation were measured and calculated.The results showed that the increase of high-temperature level and duration significantly reduced grain yield by suppressing spikelet number per panicle,seed-setting rate,and grain weight.Heat stress at booting decreased DMPI in panicles,increased DMPI in stems,but had no significant effect on photosynthetic rate.Stem NSC concentration increased whereas panicles NSC concentration,stem NSC translocation efficiency,and contribution of stem NSC to grain yield decreased.Severe heat stress even transformed the stem into a carbohydrate sink during grain filling.The heat-tolerant Wuyunjing 24 showed a higher NSC transport capacity under heat stress than the heat-sensitive Nanjing 41.Heat degree-days(HDD),which combines the effects of the intensity and duration of heat stress,used for quantifying the impacts of heat stress indicates the threshold HDD for the termination of NSC translocation is 9.82°C day.Grain yield was negatively correlated with stem NSC concentration and accumulation at maturity,and yield reduction was tightly related to NSC translocation reduction.The results suggest that heat stress at booting inhibits NSC translocation due to sink size reduction.Therefore,genotypes with higher NSC transport capacity under heat stress could be beneficial for rice yield formation.展开更多
AIM:To explore the function of Nonstructural 5A(NS5A) protein of genotype 2a(JFH1)in the replication and infection of hepatitis C virus(HCV).METHODS:Intergenotypic chimera FL-J6JFH/J4NS5A was constructed by inserting ...AIM:To explore the function of Nonstructural 5A(NS5A) protein of genotype 2a(JFH1)in the replication and infection of hepatitis C virus(HCV).METHODS:Intergenotypic chimera FL-J6JFH/J4NS5A was constructed by inserting NS5A gene from 1b stain HC-J4 by the overlapping polymerase chain reaction (PCR)method and the restriction enzyme reaction.In vitro RNA transcripts of chimera,prototype J6JFH and negative control J6JFH1(GND)were prepared and transfected into Huh-7.5 cells with liposomes.Immunofluorescence assay(IFA),fluorescence quantitative PCR and infection assay were performed to determine the protein expression and gene replication in Huh-7.5 cells.RESULTS:The HCV RNA levels in FL-J6JFH/J4NS5A chimera RNA transfected cells were significantly lower than the wild type at any indicated time point(2.58 ±5.97×106 vs 4.27±1.72×104,P=0.032).The maximal level of HCV RNA in chimera was 5.6±1.8× 104 GE/μg RNA at day 34 after transfection,while the wild type reached a peak level at day 13 which was 126 folds higher(70.65±14.11×105 vs 0.56±0.90 ×105,P=0.028).HCV proteins could also be detected by IFA in chimera-transfected cells with an obviously low level.Infection assay showed that FL-J6JFH/J4NS5A chimera could produce infectious virus particles,ranging from 10±5 ffu/mL to 78.3±23.6 ffu/mL,while that of FL-J6JFH1 ranged from 5.8±1.5×102 ffu/mL to 2.5±1.4×104 ffu/mL.CONCLUSION:JFH1 NS5A might play an important role in the robust replication of J6JFH1.The establishment of FL-J6JFH/J4NS5A provided a useful platform for studying the function of other proteins of HCV.展开更多
A field survey was performed to examine nonstructural carbohydrate (NSC) dynamics in seagrass Thalassia hemprichii at the Xincun Bay in southern China. An indoor experiment to investigate the response of NSC in T. h...A field survey was performed to examine nonstructural carbohydrate (NSC) dynamics in seagrass Thalassia hemprichii at the Xincun Bay in southern China. An indoor experiment to investigate the response of NSC in T. hemprichiito shade was conducted. Belowground tissue of T. hemprichiiwas the dominant site of NSC reserves, and soluble sugar was the primary storage compound. The starch content of belowground tissue was lower in high intertidal areas than in low intertidal areas, indicating that the longer air exposure in high intertidal areas resulted in less NSC synthesis and less accumulation of NSC in T. hemprichii. The lowest level of soluble sugar and its proportion to NSC in belowground tissue were observed near the cage culture area, where the nutrient concentration in water and sediment was the highest; while the highest level of that was observed near the coastal shrimp farm, where salinity was the lowest. Soluble sugar in belowground tis- sue showed the following trend: summer〉spring〉winter〉autumn. This corresponded to seasonal changes in the intensity of light. Leaf sugar accumulated during the autumn-winter period, providing a carbon and energy source for flower bud formation and seed germination. Short-term shading decreased NSC accumu- lation. Collectively, these results suggest that nutrient enrichment, freshwater discharge and exposure to air affect NSC dynamics in T. hemprichii. Light intensity, flower bud formation, and seed germination were all found to induce seasonal variations in NSC in T. hemprichii.展开更多
Interferon(IFN)-based therapy for hepatitis C virus(HCV) infection has recently been replaced by IFNfree direct-acting antiviral(DAA)-based therapy, which has been established as a 1^(st) line therapy with high effica...Interferon(IFN)-based therapy for hepatitis C virus(HCV) infection has recently been replaced by IFNfree direct-acting antiviral(DAA)-based therapy, which has been established as a 1^(st) line therapy with high efficacy and tolerability due to its reasonable safety profile. Resistance-associated substitutions(RASs) have been a weakness of DAA-based therapy. For example, combination therapy with daclatasvir and asunaprevir(DCV/ASV) is less effective for HCV genotype 1-infected patients with Y93H as a nonstructural protein 5A RAS. However, the problem regarding RASs has been gradually overcome with the advent of recently developed DAAs, such as sofosbuvir-based regimens or combination therapy with glecaprevir and pibrentasvir. Despite the high efficiency of DAA-based therapy, some cases fail to achieve viral eradication. P32 deletion, an NS5A RAS, has been gradually noticed in patients with DCV/ASV failure. P32 deletion has been sporadically reported and the prevalence of this RAS has been considered to be low in patients with DCV/ASV failure. Thus, the picture of P32 deletion has not been fully evaluated. Importantly, currently-commercialized DAA-based combination therapy was not likely to be effective for patients with P32 deletion. Exploring and overcoming this RAS is essential for antiviral therapy for chronic hepatitis C.展开更多
Viral nonstructural proteins in both enveloped and non-enveloped viruses play important roles in viral replication. Protein NS38 of Grass carp reovirus (GCRV), has been deduced to be a non-structural protein, and, con...Viral nonstructural proteins in both enveloped and non-enveloped viruses play important roles in viral replication. Protein NS38 of Grass carp reovirus (GCRV), has been deduced to be a non-structural protein, and, consistent with other reoviruses, is considered to cooperate with the NS80 protein in viral particle assembly. To investigate the molecular basis of the role of NS38, a complete protein was expressed in E.coli for the first time. It was found that there is a better expression of NS38 induced with IPTG at 28 ℃ rather than 37 ℃. In addition, the antiserum of NS38 prepared with purified fusion protein and injected into rabbit could be used for detecting NS38 protein expression in GCRV infected cell lysate, while there is not any reaction crossed with purified virus particle, confirming NS38 is not a component of the viral structural protein. The result reported in this study will provide evidence for further viral protein-protein and protein-RNA interaction in dsRNA viruses replication.展开更多
Nonstructural carbohydrates(NSC)are indicators of tree carbon balance and play an important role in regulating plant growth and survival.However,our understanding of the mechanism underlying drought-induced response o...Nonstructural carbohydrates(NSC)are indicators of tree carbon balance and play an important role in regulating plant growth and survival.However,our understanding of the mechanism underlying drought-induced response of NSC reserves remains limited.Here,we conducted a long-term throughfall exclusion(TFE)experiment to investigate the seasonal responses of NSC reserves to manipulative drought in two contrasting tree species(a broadleaved tree Castanopsis hystrix Miq.and a coniferous tree Pinus massoniana Lamb.)of the subtropical China.We found that in the dry season,the two tree species differed in their responses of NSC reserves to TFE at either the whole-tree level or by organs,with significantly depleted total NSC reserves in roots in both species.Under the TFE treatment,there were significant increases in the NSC pools of leaves and branches in C.hystrix,which were accompanied by significant decreases in fine root biomass and radial growth without significant changes in canopy photosynthesis;while P.massoniana exhibited significant increase in fine root biomass without significant changes in radial growth.Our results suggested that under prolonged water limitation,NSC usage for growth in C.hystrix is somewhat impaired,such that the TFE treatment resulted in NSC accumulation in aboveground organs(leaf and branch);whereas P.massoniana is capable of efficiently utilizing NSC reserves to maintain its growth under drought conditions.Our findings revealed divergent NSC allocations under experimental drought between the two contrasting tree species,which are important for better understanding the differential impacts of climate change on varying forest trees and plantation types in subtropical China.展开更多
Porcine reproductive and respiratory syndrome virus.(PRRSV) actively induces cell apoptosis both in vitro and in vivo, which can contribute critically to viral pathogenesis. Previous studies have shown that the PRRS...Porcine reproductive and respiratory syndrome virus.(PRRSV) actively induces cell apoptosis both in vitro and in vivo, which can contribute critically to viral pathogenesis. Previous studies have shown that the PRRSV nonstructural protein 4 (nsp4) is an important mediator of this process, but the underlying molecular details remain poorly understood. In this study, we found that the PRRSV nsp4 interacted with the mitochondrial inner membrane protein cytochrome cl (cyto.cl) and induced its proteolytic cleavage. Interestingly, the cleaved N-terminal fragment of cyto.cl was found to exert apoptotic activity, which could cause mitochondrial fragmentation, resulting in apoptotic cell death. And RNA interference (RNAi) silencing experiments further confirmed the crucial role which cyto.cl played in nsp4- and PRRSV-induced cell apoptosis. Thus, our data provide an important piece of mechanistic clues for PRRSV-induced cell apoptosis and also elucidate a novel mechanism for the 3C-like proteases in this finding.展开更多
Although pruning is important to obtain highquality,large-diameter timber,the effects of pruning on nonstructural carbohydrates(NSC)in aboveground organs of many timber species are not well understood.Three intensitie...Although pruning is important to obtain highquality,large-diameter timber,the effects of pruning on nonstructural carbohydrates(NSC)in aboveground organs of many timber species are not well understood.Three intensities of pruning(none,moderate and severe)were tested on poplars(Populus alba×P.talassica)in the arid desert region of northwest China to compare the concentrations of soluble sugar(SS),starch(ST)and total nonstructural carbohydrate(TNC)in leaves,branches and trunks during the growing season.The concentration of NSC components after different pruning intensities varied similarly in seasonal patterns,increasing slowly at the beginning of the growing season,continuously declining in the middle,then gradually recovering by the end of the growing season.The monthly mean NSC concentration in poplar differed significantly among the three pruning intensities(p<0.05).The SS concentration in pruned trees was higher than in unpruned trees(p<0.05).For moderately pruned trees,the concentrations of ST and TNC in trunks and branches were higher than in unpruned and in severely pruned trees(p<0.05).Compared with no pruning,pruning changed the seasonal variation in NSC concentration.The orders of SS and TNC concentrations in aboveground organs were leaf>branch>trunk,while the order of ST concentration was trunk>leaf>branch,which was related to functional differences of plant organs.The annual average growth in height of unpruned,moderately pruned,and severely pruned poplars was 0.21±0.06,0.45±0.09 and 0.24±0.05 m,respectively,and the annual average growth in DBH were 0.92±0.04,1.27±0.06 and 1.02±0.05 cm,respectively.Our results demonstrate that moderate pruning may effectively increase the annual growth in tree height and DBH while avoiding damage caused by excessive pruning to the tree body.Therefore,moderate pruning may increase the NSC storage and improve the growth of timber species.展开更多
Nonstructural components(NSCs)are parts,elements,and subsystems that are not part of the primary loadbearing system of building structures but are subject to seismic loading.Damage to NSCs may disrupt the functionalit...Nonstructural components(NSCs)are parts,elements,and subsystems that are not part of the primary loadbearing system of building structures but are subject to seismic loading.Damage to NSCs may disrupt the functionality of buildings and result in significant economic losses,injuries,and casualties.In past decades,extensive studies have been conducted on the seismic performance and seismic design methods of NSCs.As the input for the seismic design of NSCs,floor response spectra(FRS)have attracted the attention of researchers worldwide.This paper presents a state-of-the-art review of FRS.Different methods for generating FRS are summarized and compared with those in current seismic design codes.A detailed review of the parameters influencing the FRS is presented.These parameters include the characteristics of ground motion excitation,supporting building and NSCs.The floor acceleration response and the FRS obtained from experimental studies and field observations during earthquakes are also discussed.Three RC frames are used in a case study to compare the peak floor acceleration(PFA)and FRS calculated from time history analyses(THA)with that generated using current seismic design codes and different methods in the literature.Major knowledge gaps are identified,including uncertainties associated with developing FRS,FRS generation methods for different types of buildings,the need for comprehensive studies on absolute acceleration,relative velocity,and relative displacement FRS,and the calibration of FRS by field observations during earthquakes.展开更多
Genome replication of reovirus occurs in cytoplasmic inclusion bodies called viral factories or viroplasms. The viral nonstructural protein uNS, encoded by genome segment M3, is not a component of mature virions, but ...Genome replication of reovirus occurs in cytoplasmic inclusion bodies called viral factories or viroplasms. The viral nonstructural protein uNS, encoded by genome segment M3, is not a component of mature virions, but is expressed to high levels in infected cells and is concentrated in the infected cell factory matrix. Recent studies have demonstrated that uNS plays a central role in forming the matrix of these structures, as well as in recruiting other components to them for putative roles in genome replication and particle assembly.展开更多
Avian influenza virus(AIV) nonstructural 1(NS1) gene was amplified by real-time polymerse chain reac tion(RT-PCR) and inserted into pET28a, then transformed into E. coli BL21(DE3) competent cell. With the indu...Avian influenza virus(AIV) nonstructural 1(NS1) gene was amplified by real-time polymerse chain reac tion(RT-PCR) and inserted into pET28a, then transformed into E. coli BL21(DE3) competent cell. With the induction of isopropyl-β-D-thiogalactoside(IPTG) and the purification of Ni-NTA column, we finally obtained purified NS1 protein. T7-phage display system was used to screen the proteins that interacted with NS1 from lung cell cDNA li brary. The selected positive clones were identified by DNA sequencing and analyzed by BLAST program in Gene Bank. Two proteins were obtained as NS1 binding proteins, Homo sapiens nucleolar and coiled-body phosphoprotein 1(NOLC1) and Homo sapiens similar to colon cancer-associated antigen. By co-immunoprecipitation and other me thods, Homo sapiens NOLC1 was found to interact with the NS1 protein, the results would provide the basis for fur ther studying biological function of NS1 protein.展开更多
基金the National Natural Science Foundation of China(Grant Nos.32192434,42007102)Natural Science Foundation of Fujian Province(Grant No.2020J01376)+1 种基金the Start-up Foundation for Advanced Talents in Sanming University(Grant No.19YG13)Educational Research Project for Young and Middle-aged Teachers of Fujian Provincial Department of Education(Grant No.JAT190704).
文摘Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function and whole-plant level C cycling.CO_(2)elevation and nitrogen(N)deposition,which are two major environmental issues worldwide,aff ect plant photosynthetic C assimilation and C release in forest ecosystems.However,information regarding the eff ect of CO_(2)elevation and N deposition on NSC storage in diff erent organs remains limited,especially regarding the trade-off between growth and NSC reserves.Therefore,here we analyzed the variations in the NSC storage in diff erent organs of Chinese fi r(Cunninghamia lanceolata)under CO_(2)elevation and N addition and found that NSC concentrations and contents in all organs of Chinese fi r saplings increased remarkably under CO_(2)elevation.However,N addition induced diff erential accumulation of NSC among various organs.Specifi cally,N addition decreased the NSC concentrations of needles,branches,stems,and fi ne roots,but increased the NSC contents of branches and coarse roots.The increase in the NSC contents of roots was more pronounced than that in the NSC content of aboveground organs under CO_(2)elevation.The role of N addition in the increase in the structural biomass of aboveground organs was greater than that in the increase in the structural biomass of roots.This result indicated that a diff erent tradeoff between growth and NSC storage occurred to alleviate resource limitations under CO_(2)elevation and N addition and highlights the importance of separating biomass into structural biomass and NSC reserves when investigating the eff ects of environmental change on biomass allocation.
基金supported by the National Natural Science Foundation of China(Grant No.41871082)the Scientific Research Project of Ecological Environment Department of Jiangsu Province,China(Grant Nos.2020019 and 2021005)the National Special Program of Water Environment,China(Grant No.2017ZX07204002).
文摘Crop yield and quality are often limited by the amount of phosphate fertilizer added to infertile soils,a key limiting factor for sustainable development in modern agriculture.The polyphosphate kinase(ppk)gene-expressing transgenic rice with a single-copy line(ETRS)is constructed to improve phosphate fertilizer utilization efficiency for phosphorus resource conservation.To investigate the potential mechanisms of the increased biomass in ETRS in low phosphate culture,ETRS was cultivated in a low inorganic phosphate(Pi)culture medium(15μmol/L Pi,LP)and a normal Pi culture medium(300μmol/L Pi,CP),respectively.After 89 d of cultivation in different concentrations of phosphate culture media,the total phosphorus,polyphosphate(polyP),biomass,photosynthetic rate,nonstructural carbohydrate(NSC)contents,related enzyme activities,and related gene expression levels were analyzed.The results showed that ETRS had a high polyP amount to promote the photosynthetic rate in LP,and its biomass was almost the same as the wild type(WT)in CP.The NSC content of ETRS in LP was higher than that of WT in LP,but slightly lower than that of WT in CP.PolyP notably promoted the sucrose phosphate synthase activities of ETRS and significantly down-regulated the expression levels of sucrose transporter genes(OsSUT3 and OsSUT4),resulting in inhibiting the transport of sucrose from shoot to root in ETRS.It was concluded that polyP can stimulate the synthesis of NSCs in LP,which improved the growth of ETRS and triggered the biological activities of ETRS to save phosphate fertilizer.Our study provides a new way to improve the utilization rate of phosphate fertilizer in rice production.
基金the National Key Research and Development Program of China,No.2017YFC0908104National Science and Technology Projects,No.2017ZX10203201,No.2017ZX10201201,and No.2017ZX10202202.
文摘BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy options are still lacking.Our group identified hepatitis C virus nonstructural protein 3-transactivated protein 1(NS3TP1) by suppressive subtractive hybridization and bioinformatics analysis,but its role in diseases including hepatic fibrosis remains undefined.Therefore,additional studies on the function of NS3TP1 in hepatic fibrosis are urgently needed to provide new targets for treatment.AIM To elucidate the mechanism of NS3TP1 in hepatic fibrosis and the regulatory effects of calcitriol on NS3TP1.METHODS Twenty-four male C57BL/6 mice were randomized and separated into three groups,comprising the normal,fibrosis,and calcitriol treatment groups,and liver fibrosis was modeled by carbon tetrachloride(CCl4).To evaluate the level of hepatic fibrosis in every group,serological and pathological examinations of the liver were conducted.TGF-β1 was administered to boost the in vitro cultivation of LX-2 cells.NS3TP1,α-smooth muscle actin(α-SMA),collagen I,and collagen Ⅲ in every group were examined using a Western blot and real-time quantitative polymerase chain reaction.The activity of the transforming growth factor beta 1(TGFβ1)/Smad3 and NF-κB signaling pathways in each group of cells transfected with pcDNA-NS3TP1 or siRNA-NS3TP1 was detected.The statistical analysis of the data was performed using the Student’s t test.RESULTS NS3TP1 promoted the activation,proliferation,and differentiation of hepatic stellate cells(HSCs)and enhanced hepatic fibrosis via the TGFβ1/Smad3 and NF-κB signaling pathways,as evidenced by the presence of α-SMA,collagen I,collagen Ⅲ,p-smad3,and p-p65 in LX-2 cells,which were upregulated after NS3TP1 overexpression and downregulated after NS3TP1 interference.The proliferation of HSCs was lowered after NS3TP1 interference and elevated after NS3TP1 overexpression,as shown by the luciferase assay.NS3TP1 inhibited the apoptosis of HSCs.Moreover,both Smad3 and p65 could bind to NS3TP1,and p65 increased the promoter activity of NS3TP1,while NS3TP1 increased the promoter activity of TGFβ1 receptor I,as indicated by coimmunoprecipitation and luciferase assay results.Both in vivo and in vitro,treatment with calcitriol dramatically reduced the expression of NS3TP1.Calcitriol therapy-controlled HSCs activation,proliferation,and differentiation and substantially suppressed CCl4-induced hepatic fibrosis in mice.Furthermore,calcitriol modulated the activities of the above signaling pathways via downregulation of NS3TP1.CONCLUSION Our results suggest that calcitriol may be employed as an adjuvant therapy for hepatic fibrosis and that NS3TP1 is a unique,prospective therapeutic target in hepatic fibrosis.
基金the National Science Foundation’s Graduate Research Fellowship (Grant Nos.DGE-1144152 and DGE-1745303)the Garden Club of New Jersey。
文摘Interactions between water and carbon dynamics underlie drought-related tree mortality.While whole-tree water relations have been shown to play a key role in the response to and recovery from drought,the role of nonstructural carbohydrates(NSC) and how their storage and allocation changes surrounding drought events deserves further attention and is critical for understanding tree survival.Here,we quantified in situ NSC responses of temperate forest trees to the 2016 drought in the northeastern United States.Sugar and starch concentrations were measured in the stemwood of five tree species from 2014 to 2019,which allowed us to monitor NSCs in relation to climatic conditions before,during,and after the natural drought.We found that immediately following the drought,measured stemwood NSC concentrations decreased.However,NSC concentrations rebounded quickly within three years.Notably,trees allocated proportionally more to starch than to sugars following the 2016 drought.In winter 2017,starch comprised 45% of total stemwood stores,whereas starch made up only 1-2% in other years.Further,we modeled and assessed the climatic drivers of total NSC concentrations in the stem.Variation in total NSC concentrations was significantly predicted by the previous year’s temperature,precipitation,and standardized precipitation-evapotranspiration index(SPEI),with stemwood concentrations decreasing following hotter,drier periods and increasing following cooler,wetter periods.Overall,our work provides insight into the climatic drivers of NSC storage and highlights the important role that a tree’s carbon economy may play in its response and recovery to environmental stress.
基金supported by the Ministry of Science and Technology of China (No.2019FY101602)。
文摘Understanding understory seedling regeneration mechanisms is important for the sustainable development of temperate primary forests in the context of increasingly intense climate warming events.The poor regeneration of dominant tree species,however,is one of the biggest challenges it faces at the moment.Especially,the regeneration of the shade-intolerant Quercus mongolica seedling is difficult in primary forests,which contrasts with the extreme abundance of understory seedlings in secondary forests.The mechanism behind the interesting phenomenon is still unknown.This study used in-situ monitoring and nursery-controlled experiment to investigate the survival rate,growth performance,as well as nonstructural carbohydrate (NSC) concentrations and pools of various organ tissues of seedlings for two consecutive years,further analyze the understory light availability and simulate the foliage carbon (C) gain in the secondary and primary forest.Results suggested that seedlings in the secondary forest had greater biomass allocation aboveground,height and specific leaf area (SLA) in summer,which allowed the seedling to survive longer in the canopy closure period.High light availability and positive C gain in early spring and late autumn are key factors affecting the growth and survival of understory seedlings in the secondary forest,whereas seedlings in the primary forest had annual negative carbon gain.Through the growing season,the total NSC concentrations of seedlings gradually decreased,whereas those of seedlings in the secondary forest increased significantly in autumn,and were mainly stored in roots for winter consumption and the following year's summer shade period,which was verified by the nursery-controlled experiment that simulated autumn enhanced light availability improved seedling survival rate and NSC pools.In conclusion,our results revealed the survival trade-off strategies of Quercus mongolica seedlings and highlighted the necessity of high light availability during the spring and autumn phenological periods for shade-intolerant tree seedling recruitment.
基金the National Natural Science Foundation of China(32260379&32371852)the Jiangxi Provincial Natural Science Foundation(20224ACB215005)
文摘Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.
基金supported by the Natural Science Foundation of China(52122811)。
文摘To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range.
基金Supported by The South Korea Health Technology R and D Project through the South Korea Health Industry Development Institute,Funded by the Ministry of Health and Welfare,South Korea,No.HF20C0020.
文摘Flaviviruses,which include globally impactful pathogens,such as West Nile virus,yellow fever virus,Zika virus,Japanese encephalitis virus,and dengue virus,contribute significantly to human infections.Despite the ongoing emergence and resurgence of flavivirus-mediated pathogenesis,the absence of specific therapeutic options remains a challenge in the prevention and treatment of flaviviral infections.Through the intricate processes of fusion,transcription,replication,and maturation,the complex interplay of viral and host metabolic interactions affects pathophysiology.Crucial interactions involve metabolic molecules,such as amino acids,glucose,fatty acids,and nucleotides,each playing a pivotal role in the replication and maturation of flaviviruses.These viral-host metabolic molecular interactions hijack and modulate the molecular mechanisms of host metabolism.A comprehensive understanding of these intricate metabolic pathways offers valuable insights,potentially unveiling novel targets for therapeutic interventions against flaviviral pathogenesis.This review emphasizes promising avenues for the development of therapeutic agents that target specific metabolic molecules,such as amino acids,glucose,fatty acids,and nucleotides,which interact with flavivirus replication and are closely linked to the modulation of host metabolism.The clinical limitations of current drugs have prompted the development of new inhibitory strategies for flaviviruses based on an understanding of the molecular interactions between the virus and the host.
文摘With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.
基金the National Key Research and Development Program of China(2016YFD0300110)the National Natural Science Foundation of China(31571566)+1 种基金the National Science Fund for Distinguished Young Scholars(31725020)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).We would like to thank Arielle Biro at Yale University for her assistance with English language and grammatical editing.
文摘Extreme heat stress events are becoming more frequent under anticipated climate change,which can have devastating impacts on rice growth and yield.To quantify the effects of short-term heat stress at booting stage on nonstructural carbohydrates(NSC)remobilization in rice,two varieties(Nanjing 41 and Wuyunjing 24)were subjected to 32/22/27°C(maximum/minimum/mean),36/26/31°C,40/30/35°C,and 44/34/39°C for 2,4 and 6 days in phytotrons at booting stage during 2014 and 2015.Yield and yield components,dry matter partitioning index(DMPI),NSC accumulation and translocation were measured and calculated.The results showed that the increase of high-temperature level and duration significantly reduced grain yield by suppressing spikelet number per panicle,seed-setting rate,and grain weight.Heat stress at booting decreased DMPI in panicles,increased DMPI in stems,but had no significant effect on photosynthetic rate.Stem NSC concentration increased whereas panicles NSC concentration,stem NSC translocation efficiency,and contribution of stem NSC to grain yield decreased.Severe heat stress even transformed the stem into a carbohydrate sink during grain filling.The heat-tolerant Wuyunjing 24 showed a higher NSC transport capacity under heat stress than the heat-sensitive Nanjing 41.Heat degree-days(HDD),which combines the effects of the intensity and duration of heat stress,used for quantifying the impacts of heat stress indicates the threshold HDD for the termination of NSC translocation is 9.82°C day.Grain yield was negatively correlated with stem NSC concentration and accumulation at maturity,and yield reduction was tightly related to NSC translocation reduction.The results suggest that heat stress at booting inhibits NSC translocation due to sink size reduction.Therefore,genotypes with higher NSC transport capacity under heat stress could be beneficial for rice yield formation.
基金Supported by The Natural Science Foundation of China,No. 30872247 and 30600529the PLA medical research funds of China,No. 06H021 and 06Z027 and Shanghai LAD Project (B901)
文摘AIM:To explore the function of Nonstructural 5A(NS5A) protein of genotype 2a(JFH1)in the replication and infection of hepatitis C virus(HCV).METHODS:Intergenotypic chimera FL-J6JFH/J4NS5A was constructed by inserting NS5A gene from 1b stain HC-J4 by the overlapping polymerase chain reaction (PCR)method and the restriction enzyme reaction.In vitro RNA transcripts of chimera,prototype J6JFH and negative control J6JFH1(GND)were prepared and transfected into Huh-7.5 cells with liposomes.Immunofluorescence assay(IFA),fluorescence quantitative PCR and infection assay were performed to determine the protein expression and gene replication in Huh-7.5 cells.RESULTS:The HCV RNA levels in FL-J6JFH/J4NS5A chimera RNA transfected cells were significantly lower than the wild type at any indicated time point(2.58 ±5.97×106 vs 4.27±1.72×104,P=0.032).The maximal level of HCV RNA in chimera was 5.6±1.8× 104 GE/μg RNA at day 34 after transfection,while the wild type reached a peak level at day 13 which was 126 folds higher(70.65±14.11×105 vs 0.56±0.90 ×105,P=0.028).HCV proteins could also be detected by IFA in chimera-transfected cells with an obviously low level.Infection assay showed that FL-J6JFH/J4NS5A chimera could produce infectious virus particles,ranging from 10±5 ffu/mL to 78.3±23.6 ffu/mL,while that of FL-J6JFH1 ranged from 5.8±1.5×102 ffu/mL to 2.5±1.4×104 ffu/mL.CONCLUSION:JFH1 NS5A might play an important role in the robust replication of J6JFH1.The establishment of FL-J6JFH/J4NS5A provided a useful platform for studying the function of other proteins of HCV.
基金The National Natural Science Foundation of China under contract Nos 41076069 and 40776086the Project of Environmental Quality Evaluation of Seagrass Bed in South China Sea under contract No. DOMEP (MEA)-01-03+1 种基金the Public Science and Technology Research Funds Projects of Ocean under contract No. 201305030the Knowledge Innovation Program of the Chinese Academy of Sciences under contract No. SQ201219
文摘A field survey was performed to examine nonstructural carbohydrate (NSC) dynamics in seagrass Thalassia hemprichii at the Xincun Bay in southern China. An indoor experiment to investigate the response of NSC in T. hemprichiito shade was conducted. Belowground tissue of T. hemprichiiwas the dominant site of NSC reserves, and soluble sugar was the primary storage compound. The starch content of belowground tissue was lower in high intertidal areas than in low intertidal areas, indicating that the longer air exposure in high intertidal areas resulted in less NSC synthesis and less accumulation of NSC in T. hemprichii. The lowest level of soluble sugar and its proportion to NSC in belowground tissue were observed near the cage culture area, where the nutrient concentration in water and sediment was the highest; while the highest level of that was observed near the coastal shrimp farm, where salinity was the lowest. Soluble sugar in belowground tis- sue showed the following trend: summer〉spring〉winter〉autumn. This corresponded to seasonal changes in the intensity of light. Leaf sugar accumulated during the autumn-winter period, providing a carbon and energy source for flower bud formation and seed germination. Short-term shading decreased NSC accumu- lation. Collectively, these results suggest that nutrient enrichment, freshwater discharge and exposure to air affect NSC dynamics in T. hemprichii. Light intensity, flower bud formation, and seed germination were all found to induce seasonal variations in NSC in T. hemprichii.
文摘Interferon(IFN)-based therapy for hepatitis C virus(HCV) infection has recently been replaced by IFNfree direct-acting antiviral(DAA)-based therapy, which has been established as a 1^(st) line therapy with high efficacy and tolerability due to its reasonable safety profile. Resistance-associated substitutions(RASs) have been a weakness of DAA-based therapy. For example, combination therapy with daclatasvir and asunaprevir(DCV/ASV) is less effective for HCV genotype 1-infected patients with Y93H as a nonstructural protein 5A RAS. However, the problem regarding RASs has been gradually overcome with the advent of recently developed DAAs, such as sofosbuvir-based regimens or combination therapy with glecaprevir and pibrentasvir. Despite the high efficiency of DAA-based therapy, some cases fail to achieve viral eradication. P32 deletion, an NS5A RAS, has been gradually noticed in patients with DCV/ASV failure. P32 deletion has been sporadically reported and the prevalence of this RAS has been considered to be low in patients with DCV/ASV failure. Thus, the picture of P32 deletion has not been fully evaluated. Importantly, currently-commercialized DAA-based combination therapy was not likely to be effective for patients with P32 deletion. Exploring and overcoming this RAS is essential for antiviral therapy for chronic hepatitis C.
基金National Basic Research Program (973) of China ( 2009CB118701)National Natural Scientific Foundation of China (30871940, 30671615)
文摘Viral nonstructural proteins in both enveloped and non-enveloped viruses play important roles in viral replication. Protein NS38 of Grass carp reovirus (GCRV), has been deduced to be a non-structural protein, and, consistent with other reoviruses, is considered to cooperate with the NS80 protein in viral particle assembly. To investigate the molecular basis of the role of NS38, a complete protein was expressed in E.coli for the first time. It was found that there is a better expression of NS38 induced with IPTG at 28 ℃ rather than 37 ℃. In addition, the antiserum of NS38 prepared with purified fusion protein and injected into rabbit could be used for detecting NS38 protein expression in GCRV infected cell lysate, while there is not any reaction crossed with purified virus particle, confirming NS38 is not a component of the viral structural protein. The result reported in this study will provide evidence for further viral protein-protein and protein-RNA interaction in dsRNA viruses replication.
基金This study was jointly supported by the National Natural Science Foundation of China(Grant No.31930078)the Ministry of Science and Technology of China for Key R&D Program(Grant No.2021YFD2200405).
文摘Nonstructural carbohydrates(NSC)are indicators of tree carbon balance and play an important role in regulating plant growth and survival.However,our understanding of the mechanism underlying drought-induced response of NSC reserves remains limited.Here,we conducted a long-term throughfall exclusion(TFE)experiment to investigate the seasonal responses of NSC reserves to manipulative drought in two contrasting tree species(a broadleaved tree Castanopsis hystrix Miq.and a coniferous tree Pinus massoniana Lamb.)of the subtropical China.We found that in the dry season,the two tree species differed in their responses of NSC reserves to TFE at either the whole-tree level or by organs,with significantly depleted total NSC reserves in roots in both species.Under the TFE treatment,there were significant increases in the NSC pools of leaves and branches in C.hystrix,which were accompanied by significant decreases in fine root biomass and radial growth without significant changes in canopy photosynthesis;while P.massoniana exhibited significant increase in fine root biomass without significant changes in radial growth.Our results suggested that under prolonged water limitation,NSC usage for growth in C.hystrix is somewhat impaired,such that the TFE treatment resulted in NSC accumulation in aboveground organs(leaf and branch);whereas P.massoniana is capable of efficiently utilizing NSC reserves to maintain its growth under drought conditions.Our findings revealed divergent NSC allocations under experimental drought between the two contrasting tree species,which are important for better understanding the differential impacts of climate change on varying forest trees and plantation types in subtropical China.
基金supported by the National 973 Program of China(2014CB542700)the National Natural Science Foundation of China(31330077,31540004)the earmarked fund for China Agriculture Research System(CARS-36)
文摘Porcine reproductive and respiratory syndrome virus.(PRRSV) actively induces cell apoptosis both in vitro and in vivo, which can contribute critically to viral pathogenesis. Previous studies have shown that the PRRSV nonstructural protein 4 (nsp4) is an important mediator of this process, but the underlying molecular details remain poorly understood. In this study, we found that the PRRSV nsp4 interacted with the mitochondrial inner membrane protein cytochrome cl (cyto.cl) and induced its proteolytic cleavage. Interestingly, the cleaved N-terminal fragment of cyto.cl was found to exert apoptotic activity, which could cause mitochondrial fragmentation, resulting in apoptotic cell death. And RNA interference (RNAi) silencing experiments further confirmed the crucial role which cyto.cl played in nsp4- and PRRSV-induced cell apoptosis. Thus, our data provide an important piece of mechanistic clues for PRRSV-induced cell apoptosis and also elucidate a novel mechanism for the 3C-like proteases in this finding.
基金supported by Key Projects of Universities for Foreign Cultural and Educational Experts Employment Plan in 2018(T2018013)granted from Special Funds for Sustainable Development of Science and Technology Platform for Fundamental Research Business Expenses of Central Universities(2572018CP05).
文摘Although pruning is important to obtain highquality,large-diameter timber,the effects of pruning on nonstructural carbohydrates(NSC)in aboveground organs of many timber species are not well understood.Three intensities of pruning(none,moderate and severe)were tested on poplars(Populus alba×P.talassica)in the arid desert region of northwest China to compare the concentrations of soluble sugar(SS),starch(ST)and total nonstructural carbohydrate(TNC)in leaves,branches and trunks during the growing season.The concentration of NSC components after different pruning intensities varied similarly in seasonal patterns,increasing slowly at the beginning of the growing season,continuously declining in the middle,then gradually recovering by the end of the growing season.The monthly mean NSC concentration in poplar differed significantly among the three pruning intensities(p<0.05).The SS concentration in pruned trees was higher than in unpruned trees(p<0.05).For moderately pruned trees,the concentrations of ST and TNC in trunks and branches were higher than in unpruned and in severely pruned trees(p<0.05).Compared with no pruning,pruning changed the seasonal variation in NSC concentration.The orders of SS and TNC concentrations in aboveground organs were leaf>branch>trunk,while the order of ST concentration was trunk>leaf>branch,which was related to functional differences of plant organs.The annual average growth in height of unpruned,moderately pruned,and severely pruned poplars was 0.21±0.06,0.45±0.09 and 0.24±0.05 m,respectively,and the annual average growth in DBH were 0.92±0.04,1.27±0.06 and 1.02±0.05 cm,respectively.Our results demonstrate that moderate pruning may effectively increase the annual growth in tree height and DBH while avoiding damage caused by excessive pruning to the tree body.Therefore,moderate pruning may increase the NSC storage and improve the growth of timber species.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2019EEEVL0505,2019A02 and 2019B02。
文摘Nonstructural components(NSCs)are parts,elements,and subsystems that are not part of the primary loadbearing system of building structures but are subject to seismic loading.Damage to NSCs may disrupt the functionality of buildings and result in significant economic losses,injuries,and casualties.In past decades,extensive studies have been conducted on the seismic performance and seismic design methods of NSCs.As the input for the seismic design of NSCs,floor response spectra(FRS)have attracted the attention of researchers worldwide.This paper presents a state-of-the-art review of FRS.Different methods for generating FRS are summarized and compared with those in current seismic design codes.A detailed review of the parameters influencing the FRS is presented.These parameters include the characteristics of ground motion excitation,supporting building and NSCs.The floor acceleration response and the FRS obtained from experimental studies and field observations during earthquakes are also discussed.Three RC frames are used in a case study to compare the peak floor acceleration(PFA)and FRS calculated from time history analyses(THA)with that generated using current seismic design codes and different methods in the literature.Major knowledge gaps are identified,including uncertainties associated with developing FRS,FRS generation methods for different types of buildings,the need for comprehensive studies on absolute acceleration,relative velocity,and relative displacement FRS,and the calibration of FRS by field observations during earthquakes.
基金National Basic Research Program of China (973 Program) ( 2009CB118701)National Natural Scientific Foundation of China (30671615, 30871940)Innovation project of the Chinese Academy of Sciences(KSCX2-YW-N-021 to QF).
文摘Genome replication of reovirus occurs in cytoplasmic inclusion bodies called viral factories or viroplasms. The viral nonstructural protein uNS, encoded by genome segment M3, is not a component of mature virions, but is expressed to high levels in infected cells and is concentrated in the infected cell factory matrix. Recent studies have demonstrated that uNS plays a central role in forming the matrix of these structures, as well as in recruiting other components to them for putative roles in genome replication and particle assembly.
基金Supported by the National Natural Science Foundation of China(No.30671852)the Open Research Fund Program of the State Key Laboratory of Virology of China(Nos.2010009, 2007007) the Research Fund of the Key Laboratory of Department of Education of Liaoning Province, China(No.2009S043)
文摘Avian influenza virus(AIV) nonstructural 1(NS1) gene was amplified by real-time polymerse chain reac tion(RT-PCR) and inserted into pET28a, then transformed into E. coli BL21(DE3) competent cell. With the induction of isopropyl-β-D-thiogalactoside(IPTG) and the purification of Ni-NTA column, we finally obtained purified NS1 protein. T7-phage display system was used to screen the proteins that interacted with NS1 from lung cell cDNA li brary. The selected positive clones were identified by DNA sequencing and analyzed by BLAST program in Gene Bank. Two proteins were obtained as NS1 binding proteins, Homo sapiens nucleolar and coiled-body phosphoprotein 1(NOLC1) and Homo sapiens similar to colon cancer-associated antigen. By co-immunoprecipitation and other me thods, Homo sapiens NOLC1 was found to interact with the NS1 protein, the results would provide the basis for fur ther studying biological function of NS1 protein.