A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled conto...A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.展开更多
A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly foc...A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly focuses on exploiting different features of edges and noises by NSCT. Furthermore, ICS strategy is introduced to optimize threshold parameter and amplify parameter adaptively. Numerical experiments on real SAR images show that there are improvements in both visual effects and objective indexes.展开更多
为有效抑制超声仪器成像中固有的斑点噪声,提出了一种基于非降采样Contourlet变换(nonsubsampled Contourlettransform,NSCT)域中边缘信号系数区提取和最小均方误差(minimum mean square error,MMSE)估计的超声图像的降噪算法。根据NSC...为有效抑制超声仪器成像中固有的斑点噪声,提出了一种基于非降采样Contourlet变换(nonsubsampled Contourlettransform,NSCT)域中边缘信号系数区提取和最小均方误差(minimum mean square error,MMSE)估计的超声图像的降噪算法。根据NSCT变换的细节信息刻画能力和平移不变性,对其各高频子带中系数进行分类,提取出边缘信号和平缓信号系数区;对超声图像的乘性斑点噪声进行推导研究,在边缘信号系数区和平缓信号系数区,根据各自噪声项的性质分别得出满足贝叶斯最小均方误差估计的降噪滤波方程;最后,对降噪后的系数进行NSCT反变换重建得到降噪图像。仿真图像和临床超声图像的实验结果证实,该算法与传统方法相比,不但能更有效地对斑点噪声进行抑制,也更好地保留了图像的细节信息。展开更多
基金The National Key Technologies R&D Program during the 12th Five-Year Period of China(No.2012BAJ23B02)Science and Technology Support Program of Jiangsu Province(No.BE2010606)
文摘A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.
基金supported by National Natural Science Foundationof China (No. 60802061)Natural Science Research Item of the Education Department of Henan Province (No. 2008B510001)Innovation Scientists and Technicians Troop Construction Projects of Henan Province (No. 084100510012)
文摘A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly focuses on exploiting different features of edges and noises by NSCT. Furthermore, ICS strategy is introduced to optimize threshold parameter and amplify parameter adaptively. Numerical experiments on real SAR images show that there are improvements in both visual effects and objective indexes.
文摘为有效抑制超声仪器成像中固有的斑点噪声,提出了一种基于非降采样Contourlet变换(nonsubsampled Contourlettransform,NSCT)域中边缘信号系数区提取和最小均方误差(minimum mean square error,MMSE)估计的超声图像的降噪算法。根据NSCT变换的细节信息刻画能力和平移不变性,对其各高频子带中系数进行分类,提取出边缘信号和平缓信号系数区;对超声图像的乘性斑点噪声进行推导研究,在边缘信号系数区和平缓信号系数区,根据各自噪声项的性质分别得出满足贝叶斯最小均方误差估计的降噪滤波方程;最后,对降噪后的系数进行NSCT反变换重建得到降噪图像。仿真图像和临床超声图像的实验结果证实,该算法与传统方法相比,不但能更有效地对斑点噪声进行抑制,也更好地保留了图像的细节信息。