Rescattering of stimulated Raman side scattering(SRSS)is observed for the first time via two-dimensional(2D)particle-in-cell(PIC)simulations.We construct a theoretical model for the rescattering process,which can pred...Rescattering of stimulated Raman side scattering(SRSS)is observed for the first time via two-dimensional(2D)particle-in-cell(PIC)simulations.We construct a theoretical model for the rescattering process,which can predict the region of occurrence of mth-order SRSS and estimate its threshold.The rescattering process is identified by the 2D PIC simulations under typical conditions of a direct-drive inertial confinement fusion scheme.Hot electrons produced by second-order SRSS propagate nearly perpendicular to the density gradient and gain nearly the same energy as in first-order SRSS,but there is no cascade acceleration to produce superhot electrons.Parametric studies for a wide range of ignition conditions show that SRSS and associated rescatterings are robust and important processes in inertial confinement fusion.展开更多
In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results a...In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations.展开更多
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun...Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
As a general feature, the electric field of a localized electric charge distribution diminishes as the distance from the distribution increases;there are exceptions to this feature. For instance, the electric field of...As a general feature, the electric field of a localized electric charge distribution diminishes as the distance from the distribution increases;there are exceptions to this feature. For instance, the electric field of a charged ring (being a localized charge distribution) along its symmetry axis perpendicular to the ring through its center rather than as expected being a diminishing field encounters a local maximum bump. It is the objective of this research-oriented study to analyze the impact of this bump on the characteristics of a massive point-like charged particle oscillating along the symmetry axis. Two scenarios with and without gravity along the symmetry axis are considered. In addition to standard kinematic diagrams, various phase diagrams conducive to a better understanding are constructed. Applying Computer Algebra System (CAS), [1] [2] most calculations are carried out symbolically. Finally, by assigning a set of reasonable numeric parameters to the symbolic quantities various 3D animations are crafted. All the CAS codes are included.展开更多
A method of micro-scanning location adaptive calibration was proposed, which was real- ized by the digital image micro-displacement estimation. With geometric calculation, this calibration method used the displacement...A method of micro-scanning location adaptive calibration was proposed, which was real- ized by the digital image micro-displacement estimation. With geometric calculation, this calibration method used the displacement estimation of two thermal microscope images to get the size and direc- tion of each scanning location calibration angle. And each location calibration process was repeated according to the offset given by the system beforehand. The comparison experiments of sequence oversampling reconstruction before and after the micro-scanning location calibration were done. The results showed that the calibration method effectively improved the thermal microscope imaging qual- ity.展开更多
An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the propos...An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the proposed second-order oversampling reconstruction algorithm and local gradient image reconstruction algorithm. In this paper, we describe the local gradient image reconstruction model, the error correction technique, down-sampling model and the error correction principle. In this paper, we use a Lena original image and four low-resolution images obtained from the standard half-pixel displacement to simulate and verify the effectiveness of the proposed technique. In order to verify the effectiveness of the proposed technique, two groups of low-resolution thermal microscope images are collected by the actual thermal microscope imaging system for experimental study. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning errors, improve the imaging effect of the system and improve the system's spatial resolution. It can be applied to other electro-optical imaging systems to improve their resolution.展开更多
The nonuniform distribution of interference spectrum in wavenumber k-space is a key issue to limit the imaging quality of Fourier-domain optical coherence tomography(FD-OCT).At present,the reconstruction quality at di...The nonuniform distribution of interference spectrum in wavenumber k-space is a key issue to limit the imaging quality of Fourier-domain optical coherence tomography(FD-OCT).At present,the reconstruction quality at different depths among a variety of processing methods in k-space is still uncertain.Using simulated and experimental interference spectra at different depths,the effects of common six processing methods including uniform resampling(linear interpolation(LI),cubic spline interpolation(CSI),time-domain interpolation(TDI),and K-B window convolution)and nonuniform sampling direct-reconstruction(Lomb periodogram(LP)and nonuniform discrete Fourier transform(NDFT))on the reconstruction quality of FD-OCT were quantitatively analyzed and compared in this work.The results obtained by using simulated and experimental data were coincident.From the experimental results,the averaged peak intensity,axial resolution,and signal-to-noise ratio(SNR)of NDFT at depth from 0.5 to 3.0mm were improved by about 1.9 dB,1.4 times,and 11.8 dB,respectively,compared to the averaged indices of all the uniform resampling methods at all depths.Similarly,the improvements of the above three indices of LP were 2.0 dB,1.4 times,and 11.7 dB,respectively.The analysis method and the results obtained in this work are helpful to select an appropriate processing method in k-space,so as to improve the imaging quality of FD-OCT.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25050700)the Fund of the National Key Laboratory of Plasma Physics(Grant No.6142A04230103)+2 种基金the National Natural Science Foundation of China(Grant No.11805062)the China Postdoctoral Science Foundation(Grant No.2022M720513)the Anhui Provincial Natural Science Foundation(Grant No.2308085QA25).
文摘Rescattering of stimulated Raman side scattering(SRSS)is observed for the first time via two-dimensional(2D)particle-in-cell(PIC)simulations.We construct a theoretical model for the rescattering process,which can predict the region of occurrence of mth-order SRSS and estimate its threshold.The rescattering process is identified by the 2D PIC simulations under typical conditions of a direct-drive inertial confinement fusion scheme.Hot electrons produced by second-order SRSS propagate nearly perpendicular to the density gradient and gain nearly the same energy as in first-order SRSS,but there is no cascade acceleration to produce superhot electrons.Parametric studies for a wide range of ignition conditions show that SRSS and associated rescatterings are robust and important processes in inertial confinement fusion.
文摘In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations.
基金National Natural Science Foundation of China under Grant Nos.51921006 and 51725801Fundamental Research Funds for the Central Universities under Grant No.FRFCU5710093320Heilongjiang Touyan Innovation Team Program。
文摘Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
文摘As a general feature, the electric field of a localized electric charge distribution diminishes as the distance from the distribution increases;there are exceptions to this feature. For instance, the electric field of a charged ring (being a localized charge distribution) along its symmetry axis perpendicular to the ring through its center rather than as expected being a diminishing field encounters a local maximum bump. It is the objective of this research-oriented study to analyze the impact of this bump on the characteristics of a massive point-like charged particle oscillating along the symmetry axis. Two scenarios with and without gravity along the symmetry axis are considered. In addition to standard kinematic diagrams, various phase diagrams conducive to a better understanding are constructed. Applying Computer Algebra System (CAS), [1] [2] most calculations are carried out symbolically. Finally, by assigning a set of reasonable numeric parameters to the symbolic quantities various 3D animations are crafted. All the CAS codes are included.
基金Supported by Beijing Natural Science Foundation(4062029)Ministry of Science and Technology Innovation Foundation for Small and Medium-sized Enterprises (06KW1051)North China University of Technology Dr. Start-up Fund for 2013
文摘A method of micro-scanning location adaptive calibration was proposed, which was real- ized by the digital image micro-displacement estimation. With geometric calculation, this calibration method used the displacement estimation of two thermal microscope images to get the size and direc- tion of each scanning location calibration angle. And each location calibration process was repeated according to the offset given by the system beforehand. The comparison experiments of sequence oversampling reconstruction before and after the micro-scanning location calibration were done. The results showed that the calibration method effectively improved the thermal microscope imaging qual- ity.
基金Supported by Postgraduate Innovation Funding Project of Hebei Province(CXZZSS2019050)the Qinhuangdao City Key Research and Development Program Science and Technology Support Project(201801B010)
文摘An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the proposed second-order oversampling reconstruction algorithm and local gradient image reconstruction algorithm. In this paper, we describe the local gradient image reconstruction model, the error correction technique, down-sampling model and the error correction principle. In this paper, we use a Lena original image and four low-resolution images obtained from the standard half-pixel displacement to simulate and verify the effectiveness of the proposed technique. In order to verify the effectiveness of the proposed technique, two groups of low-resolution thermal microscope images are collected by the actual thermal microscope imaging system for experimental study. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning errors, improve the imaging effect of the system and improve the system's spatial resolution. It can be applied to other electro-optical imaging systems to improve their resolution.
基金supported by the National Natural Science Foundation of China(Grant Nos.61575205 and 62175022)Sichuan Natural Science Foundation(2022NSFSC0803)Sichuan Science and Technology Program(2021JDRC0035).
文摘The nonuniform distribution of interference spectrum in wavenumber k-space is a key issue to limit the imaging quality of Fourier-domain optical coherence tomography(FD-OCT).At present,the reconstruction quality at different depths among a variety of processing methods in k-space is still uncertain.Using simulated and experimental interference spectra at different depths,the effects of common six processing methods including uniform resampling(linear interpolation(LI),cubic spline interpolation(CSI),time-domain interpolation(TDI),and K-B window convolution)and nonuniform sampling direct-reconstruction(Lomb periodogram(LP)and nonuniform discrete Fourier transform(NDFT))on the reconstruction quality of FD-OCT were quantitatively analyzed and compared in this work.The results obtained by using simulated and experimental data were coincident.From the experimental results,the averaged peak intensity,axial resolution,and signal-to-noise ratio(SNR)of NDFT at depth from 0.5 to 3.0mm were improved by about 1.9 dB,1.4 times,and 11.8 dB,respectively,compared to the averaged indices of all the uniform resampling methods at all depths.Similarly,the improvements of the above three indices of LP were 2.0 dB,1.4 times,and 11.7 dB,respectively.The analysis method and the results obtained in this work are helpful to select an appropriate processing method in k-space,so as to improve the imaging quality of FD-OCT.