Drying is a key step in starch noodle production.The effects of high temperature(60,70,80°C)and high relative humidity(65%,75%,85%)drying(HTHD)on the moisture distribution,starch microstructure and cooking charac...Drying is a key step in starch noodle production.The effects of high temperature(60,70,80°C)and high relative humidity(65%,75%,85%)drying(HTHD)on the moisture distribution,starch microstructure and cooking characteristics of extruded whole buckwheat noodles were investigated.Compared to the conventional hot-air drying(CHAD)at 40°C,the increase in drying temperature(60–80°C)and the decrease in relative humidity(85%–65%)significantly improved drying efficiency of the extruded noodles.By adjusting drying temperature and relative humidity,the rate of moisture migration in noodles and phase transition of starch could be appropriately controlled.The optimum drying parameters(T70H75,70°C drying temperature and 75%relative humidity)showed smooth and dense network structure,resulting in the lowest cooking loss(6.61%),broken rate(0%),highest hardness(1695.17 g)and springiness(0.92).However,the total flavonoid content(TFC)and the total phenolic content(TPC)reduced by 6.81%–28.50%and 7.19%–53.23%in contrast to CHAD,and the color of buckwheat noodles became darker through HTHD.These findings showed the potential of HTHD for increasing drying efficiency and improving buckwheat noodle quality.The appropriate drying parameters could maintain a balanced relationship between moisture migration in noodles and phase transition of starch,which resulted in better cooking quality for extruded whole buckwheat noodles.Such a study is valuable for regulating the process conditions of buckwheat-based foods and promoting its commercial utilization.展开更多
Rice noodles were prepared using dry-milled rice flours, which were treated by annealing and removing the water-soluble fraction to improve the quality of noodles without using chemical additives. The combined treatme...Rice noodles were prepared using dry-milled rice flours, which were treated by annealing and removing the water-soluble fraction to improve the quality of noodles without using chemical additives. The combined treatment (TC) with annealing and water-soluble fraction removal decreased the cooking losses for Goamibyeo but not for Chenmaai and Milyang260, which had soft kernels and contained less damaged starch than the hard kernel rice after milling. TC significantly reduced the hardness and adhesiveness of cooked noodles, and increased the cohesiveness according to the texture profile analysis. A sensory evaluation detected an increase in mouth feel firmness and elasticity of cooked TC noodles. These results indicate that annealing at room temperature for 3 h followed by the removal of the water-soluble fraction is effective for reducing the cooking losses and improving the textural properties of noodles made from rice flour with high starch damage.展开更多
文摘Drying is a key step in starch noodle production.The effects of high temperature(60,70,80°C)and high relative humidity(65%,75%,85%)drying(HTHD)on the moisture distribution,starch microstructure and cooking characteristics of extruded whole buckwheat noodles were investigated.Compared to the conventional hot-air drying(CHAD)at 40°C,the increase in drying temperature(60–80°C)and the decrease in relative humidity(85%–65%)significantly improved drying efficiency of the extruded noodles.By adjusting drying temperature and relative humidity,the rate of moisture migration in noodles and phase transition of starch could be appropriately controlled.The optimum drying parameters(T70H75,70°C drying temperature and 75%relative humidity)showed smooth and dense network structure,resulting in the lowest cooking loss(6.61%),broken rate(0%),highest hardness(1695.17 g)and springiness(0.92).However,the total flavonoid content(TFC)and the total phenolic content(TPC)reduced by 6.81%–28.50%and 7.19%–53.23%in contrast to CHAD,and the color of buckwheat noodles became darker through HTHD.These findings showed the potential of HTHD for increasing drying efficiency and improving buckwheat noodle quality.The appropriate drying parameters could maintain a balanced relationship between moisture migration in noodles and phase transition of starch,which resulted in better cooking quality for extruded whole buckwheat noodles.Such a study is valuable for regulating the process conditions of buckwheat-based foods and promoting its commercial utilization.
文摘Rice noodles were prepared using dry-milled rice flours, which were treated by annealing and removing the water-soluble fraction to improve the quality of noodles without using chemical additives. The combined treatment (TC) with annealing and water-soluble fraction removal decreased the cooking losses for Goamibyeo but not for Chenmaai and Milyang260, which had soft kernels and contained less damaged starch than the hard kernel rice after milling. TC significantly reduced the hardness and adhesiveness of cooked noodles, and increased the cohesiveness according to the texture profile analysis. A sensory evaluation detected an increase in mouth feel firmness and elasticity of cooked TC noodles. These results indicate that annealing at room temperature for 3 h followed by the removal of the water-soluble fraction is effective for reducing the cooking losses and improving the textural properties of noodles made from rice flour with high starch damage.