Fibrous components and structural morphology of the connective tissue of the lamina cribrosa obtained from 35 normal human autopsy eyes were examined by histochemical staining, transmission electron microscopic and co...Fibrous components and structural morphology of the connective tissue of the lamina cribrosa obtained from 35 normal human autopsy eyes were examined by histochemical staining, transmission electron microscopic and computer-展开更多
Quantum phase transitions (QPTs) play a central role for understanding many-body physics [1]. Different from classical phase transitions which are driven by thermal fluctuations, QPTs are driven by quantum fluctuation...Quantum phase transitions (QPTs) play a central role for understanding many-body physics [1]. Different from classical phase transitions which are driven by thermal fluctuations, QPTs are driven by quantum fluctuations at zero temperature and can be accessed by varying some physical parameters of the many-body system. Characterizing QPTs, which normally needs complicated theoretical calculations, becomes a fundamental problem to further study quantum matters. Here a group of physicists proposed to connect the geometrical properties of reduced density matrices (RDMs) of the physical system with its quantum phase transitions [2,3]展开更多
文摘Fibrous components and structural morphology of the connective tissue of the lamina cribrosa obtained from 35 normal human autopsy eyes were examined by histochemical staining, transmission electron microscopic and computer-
文摘Quantum phase transitions (QPTs) play a central role for understanding many-body physics [1]. Different from classical phase transitions which are driven by thermal fluctuations, QPTs are driven by quantum fluctuations at zero temperature and can be accessed by varying some physical parameters of the many-body system. Characterizing QPTs, which normally needs complicated theoretical calculations, becomes a fundamental problem to further study quantum matters. Here a group of physicists proposed to connect the geometrical properties of reduced density matrices (RDMs) of the physical system with its quantum phase transitions [2,3]