This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of ...This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of eight (180×250×1,200 ram) beam specimens. Three variables are adopted in this paper: tensile reinforcement ratio, type of concrete (NSC (normal strength concrete) or SCC (self-compacting concrete)) and height of falling (dropped) ball (1 m or 2 m). The experimental results indicated that the number of blows increased with increasing of tensile reinforcement ratio and compressive strength by about 35% and 123%, respectively. Maximum mid-span deflection was increased with increasing falling height and decreased with increasing reinforcement ration and concrete compressive strength. The increasing of concrete compressive strength is more effective than increasing of the reinforcement ratio, it appeared that the percentage of increasing exceeds 50%. The ultimate strength is decreased with increasing the falling height for about 34%-44%.展开更多
Due to high cost of aggregates, cement and steel in plain regions of Pakistan, low income people are unable to get their houses constructed using Reinforced Cement Concrete (RCC). In this study, potential of baked cla...Due to high cost of aggregates, cement and steel in plain regions of Pakistan, low income people are unable to get their houses constructed using Reinforced Cement Concrete (RCC). In this study, potential of baked clay as an economical material of building construction is investigated in order to replace normal concrete. For this purpose, compressive strength and tensile strength of baked clay fired at 1000℃ were determined. The results show that the compressive strength and tensile strength of baked clay are about 65%, and 80% more than those of corresponding values of normal concrete, respectively. This implies that by utilizing reinforced baked clay instead of RCC, saving of cement aggregates and reinforcing steel could be achieved.展开更多
Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were p...Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gersfle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified.展开更多
文摘This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of eight (180×250×1,200 ram) beam specimens. Three variables are adopted in this paper: tensile reinforcement ratio, type of concrete (NSC (normal strength concrete) or SCC (self-compacting concrete)) and height of falling (dropped) ball (1 m or 2 m). The experimental results indicated that the number of blows increased with increasing of tensile reinforcement ratio and compressive strength by about 35% and 123%, respectively. Maximum mid-span deflection was increased with increasing falling height and decreased with increasing reinforcement ration and concrete compressive strength. The increasing of concrete compressive strength is more effective than increasing of the reinforcement ratio, it appeared that the percentage of increasing exceeds 50%. The ultimate strength is decreased with increasing the falling height for about 34%-44%.
文摘Due to high cost of aggregates, cement and steel in plain regions of Pakistan, low income people are unable to get their houses constructed using Reinforced Cement Concrete (RCC). In this study, potential of baked clay as an economical material of building construction is investigated in order to replace normal concrete. For this purpose, compressive strength and tensile strength of baked clay fired at 1000℃ were determined. The results show that the compressive strength and tensile strength of baked clay are about 65%, and 80% more than those of corresponding values of normal concrete, respectively. This implies that by utilizing reinforced baked clay instead of RCC, saving of cement aggregates and reinforcing steel could be achieved.
文摘Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gersfle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified.