Modeling time headways between vehicles has attracted increasing interest in the traffic flow research field recently, because the corresponding statistics help to reveal the intrinsic interactions governing the vehic...Modeling time headways between vehicles has attracted increasing interest in the traffic flow research field recently, because the corresponding statistics help to reveal the intrinsic interactions governing the vehicle dynamics. However, most previous micro-simulation models cannot yield the observed log-normal distributed headways. This paper designs a new car-following model inspired by the Galton board to reproduce the observed time-headway distributions as well as the complex traffic phenomena. The consistency between the empirical data and the simulation results indicates that this new car-following model provides a reasonable description of the car-following behaviours.展开更多
基金supported partly by the National Basic Research Program of China (Grant No. 2006CB705506)the National Hi-Tech Research and Development Program of China (Grant Nos. 2006AA11Z215 and 2007AA11Z222)the National Natural Science Foundation of China (Grant Nos. 50708055, 60774034 and 10872194)
文摘Modeling time headways between vehicles has attracted increasing interest in the traffic flow research field recently, because the corresponding statistics help to reveal the intrinsic interactions governing the vehicle dynamics. However, most previous micro-simulation models cannot yield the observed log-normal distributed headways. This paper designs a new car-following model inspired by the Galton board to reproduce the observed time-headway distributions as well as the complex traffic phenomena. The consistency between the empirical data and the simulation results indicates that this new car-following model provides a reasonable description of the car-following behaviours.