In this paper, the multivariate linear model Y = XB+e, e ~ Nm×k(0, ImΣ) is considered from the Bayes perspective. Under the normal-inverse Wishart prior for (BΣ), the Bayes estimators are derived. The sup...In this paper, the multivariate linear model Y = XB+e, e ~ Nm×k(0, ImΣ) is considered from the Bayes perspective. Under the normal-inverse Wishart prior for (BΣ), the Bayes estimators are derived. The superiority of the Bayes estimators of B and Σ over the least squares estimators under the criteria of Bayes mean squared error (BMSE) and Bayes mean squared error matrix (BMSEM) is shown. In addition, the Pitman Closeness (PC) criterion is also included to investigate the superiority of the Bayes estimator of B.展开更多
针对基于Wishart分布马尔可夫场(Markov random field,MRF)海陆分割存在海面和陆地整体区域无法使用单一Wishart分布描述的问题,提出了一种基于混合Wishart分布的极化合成孔径雷达(synthetic aperture radar,SAR)图像海岸线检测方法。...针对基于Wishart分布马尔可夫场(Markov random field,MRF)海陆分割存在海面和陆地整体区域无法使用单一Wishart分布描述的问题,提出了一种基于混合Wishart分布的极化合成孔径雷达(synthetic aperture radar,SAR)图像海岸线检测方法。该方法首先对极化SAR总功率边缘能量采用两区域Ostu阈值分割得到初始海陆分割结果,然后采用混合Wishart分布描述陆地和海面区域,通过基于混合Wishart分布MRF两区域分割迭代计算实现海陆精确分割。最后对经过水域合并处理的海陆分割结果进行边界跟踪实现海岸线检测。分别使用了RADARSAT2中国海南陵水地区和新加坡部分地区极化SAR数据进行实验,实验结果证明提出方法比基于Wishart分布MRF分割方法更加精确和鲁棒。展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11201005,11071015)the Foundation of National Bureau of Statistics(Grant No.2013LZ17)the Natural Science Foundation of Anhui Province(Grant No.1308085QA13)
文摘In this paper, the multivariate linear model Y = XB+e, e ~ Nm×k(0, ImΣ) is considered from the Bayes perspective. Under the normal-inverse Wishart prior for (BΣ), the Bayes estimators are derived. The superiority of the Bayes estimators of B and Σ over the least squares estimators under the criteria of Bayes mean squared error (BMSE) and Bayes mean squared error matrix (BMSEM) is shown. In addition, the Pitman Closeness (PC) criterion is also included to investigate the superiority of the Bayes estimator of B.
文摘针对基于Wishart分布马尔可夫场(Markov random field,MRF)海陆分割存在海面和陆地整体区域无法使用单一Wishart分布描述的问题,提出了一种基于混合Wishart分布的极化合成孔径雷达(synthetic aperture radar,SAR)图像海岸线检测方法。该方法首先对极化SAR总功率边缘能量采用两区域Ostu阈值分割得到初始海陆分割结果,然后采用混合Wishart分布描述陆地和海面区域,通过基于混合Wishart分布MRF两区域分割迭代计算实现海陆精确分割。最后对经过水域合并处理的海陆分割结果进行边界跟踪实现海岸线检测。分别使用了RADARSAT2中国海南陵水地区和新加坡部分地区极化SAR数据进行实验,实验结果证明提出方法比基于Wishart分布MRF分割方法更加精确和鲁棒。