期刊文献+
共找到1,285篇文章
< 1 2 65 >
每页显示 20 50 100
Understanding the creep behaviors and mechanisms of Mg-Gd-Zn alloys via machine learning
1
作者 Shuxia Ouyang Xiaobing Hu +7 位作者 Qingfeng Wu Jeong Ah Lee Jae Heung Lee Chenjin Zhang Chunhui Wang Hyoung Seop Kim Guangyu Yang Wanqi Jie 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3281-3291,共11页
Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with co... Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with complex microstructural evolution during creep tests,bring great challenges in understanding and predicting creep behaviors.In this study,we proposed to predict the creep properties and reveal the creep mechanisms of Mg-Gd-Zn based alloys by machine learning.On the one hand,the minimum creep rates were effectively predicted by using a support vector regression model.The complex and nonmonotonic effects of test temperature,test stress,alloying elements,and heat treatment conditions on the creep properties were revealed.On the other hand,the creep stress exponents and creep activation energies were calculated by machine learning to analyze the variation of creep mechanisms,based on which the constitutive equations of Mg-Gd-Zn based alloys were obtained.This study introduces an efficient method to comprehend creep behaviors through machine learning,offering valuable insights for the future design and selection of Mg alloys. 展开更多
关键词 Mg-Gd-Zn based alloys Machine learning creep rate creep mechanism Constitutive equation
下载PDF
A creep model for ultra-deep salt rock considering thermal-mechanical damage under triaxial stress conditions 被引量:1
2
作者 Chao Liang Jianfeng Liu +3 位作者 Jianxiong Yang Huining Xu Zhaowei Chen Lina Ran 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期588-596,共9页
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin... To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems. 展开更多
关键词 creep experiments creep model Thermal and mechanical damage Fractional derivative
下载PDF
Design of the Miniature Electrode-feeding MechanismBased on Creeping Motion
3
作者 冯晓光 赵万生 +1 位作者 詹涵菁 栗岩 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1998年第4期23-27,共5页
This paper describes the creeping principle. Based on this principle, a pocket-sized electrode creep-feeding mechanism applied to electrical discharge machining(EDM) is designed. Features of the mechanism: the structu... This paper describes the creeping principle. Based on this principle, a pocket-sized electrode creep-feeding mechanism applied to electrical discharge machining(EDM) is designed. Features of the mechanism: the structure of two-layer parallel plate is employed as its moving pairs, and an integral structure is adoped in the design of the mechanism. This mechanism can drive an electrode by piezoelectric element in steps of order of nanometer (the minimum feeding step of 78nm). 展开更多
关键词 ELECTRODE creep direct DRIVE mechanism PIEZOELECTRIC element EDM
下载PDF
Creep properties and controlled creep mechanism of as-cast Mg-5Zn-2.5Er alloy
4
作者 李晗 杜文博 +2 位作者 李建辉 李淑波 王朝辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第7期1212-1216,共5页
The creep behaviors of as-cast Mg-5Zn-2.5Er alloy(mass fraction,%) ,under various applied stresses(50-70 MPa) and creep temperatures(150-200℃) for 100 h,were investigated.The stress exponent n is in the range of 1.5-... The creep behaviors of as-cast Mg-5Zn-2.5Er alloy(mass fraction,%) ,under various applied stresses(50-70 MPa) and creep temperatures(150-200℃) for 100 h,were investigated.The stress exponent n is in the range of 1.5-5.8,and the activation energy Qc is in the range of 28.3-77.1 kJ/mol.With respect to the calculated n and Qc as well as the microstructures after creep,it is suggested that there is a transition region between grain boundary sliding(GBS) dominated creep to dislocation creep mechanism(from n<3 to n>3) ,arising in the steady-stage creep rate value of 2.89×10-9 s-1. 展开更多
关键词 magnesium alloy as-cast magnesium alloy creep mechanism ERBIUM
下载PDF
Effects of process parameters on mechanical properties and microstructures of creep aged 2124 aluminum alloy 被引量:7
5
作者 湛利华 李炎光 黄明辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2232-2238,共7页
A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechan... A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechanical properties and creep aging process. The results show that creep strain and creep rate increase with the applied stress. The hardness of specimen varies with aging time and stress in a effect of temperature on hardness of material is seen in the range of 185-195 ℃. The optimum mechanical properties are obtained at the conditions of (200 MPa, 185 ℃, 8 h) as the result of the coexistence of strengthening S" and S' phases in the matrix by transmission electron microscopy (TEM). TEM observation shows that applied stress promotes the formation and growth of precioitates and no obvious stress orientation effect is observed in the matrix. 展开更多
关键词 aluminum alloy creep aging behavior age hardening mechanical property MICROSTRUCTURE process parameter
下载PDF
Microstructure,mechanical properties and creep resistance of Mg-(8%-12%)Zn-(2%-6%) Al alloys 被引量:4
6
作者 万晓峰 倪红军 +2 位作者 黄明宇 张华丽 孙建华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期896-903,共8页
The microstructural characteristics, mechanical properties and creep resistance of Mg-(8%-12%) Zn-(2%-6%) A1 alloys were investigated to get a better overall understanding of these series alloys. The results indic... The microstructural characteristics, mechanical properties and creep resistance of Mg-(8%-12%) Zn-(2%-6%) A1 alloys were investigated to get a better overall understanding of these series alloys. The results indicate that the microstructure of the alloys ZA82, ZA102 and ZA122 with the mass ratio of Zn to A1 of 4-6 is mainly composed of a-Mg matrix and two different morphologies of precipitates (block τ-Mg32(Al, Zn)49 and dense lamellar ε-Mg51Zn20), the alloys ZA84, ZA104 and ZA124 with the mass ratio of 2-3 contain α-Mg matrix and only block r phases, and the alloys ZA86, ZA106 and ZA126 with the mass ratio of 1-2 consist of a-Mg matrix, block r precipitates, lamellar Ф-Al2Mg5Zn2 eutectics and flocculent β-Mg17Al12 compounds. The alloys studied with the mass ratio of Zn to A1 of 2-3 exhibit high creep resistance, and the alloy ZA124 with the continuous network of r precipitating along grain boundaries shows the highest creep resistance. 展开更多
关键词 Mg-Zn-A1 alloys MICROSTRUCTURE mechanical property creep resistance
下载PDF
Experimental determination of mechanical properties and short-time creep of AISI 304 stainless steel at elevated temperatures 被引量:3
7
作者 Josip Brnic Ji-tai Niu +2 位作者 Goran Turkalj Marko Canadija Domagoj Lanc 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第1期39-45,共7页
The high temperature properties of AISI 304 stainless steel were studied. Basic data about the employed experimental equipment, testing procedures, and specimen geometry were given. The experimental setup was used to ... The high temperature properties of AISI 304 stainless steel were studied. Basic data about the employed experimental equipment, testing procedures, and specimen geometry were given. The experimental setup was used to obtain stress-strain diagrams from tensile tests at room temperature as well as several elevated temperatures. Furthermore, the specimens were subjected to short-time creep tests at various temperatures. Stress levels for creep testing were established as a percentage of yield stress. The results indicate that at lowered temperatures and lower stress levels, AISI 304 stainless steel can be used as a sufficiently creep resistant material. 展开更多
关键词 AISI 304 mechanical properties elevated temperature creep tests constitutive model
下载PDF
Magnesium-based nanocomposites:A review from mechanical,creep and fatigue properties 被引量:7
8
作者 S.Abazari A.Shamsipur +5 位作者 H.R.Bakhsheshi-Rad J.W.Drelich J.Goldman S.Sharif A.F.Ismail M.Razzaghi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2655-2687,共33页
The addition of nanoscale additions to magnesium(Mg)based alloys can boost mechanical characteristics without noticeably decreasing ductility.Since Mg is the lightest structural material,the Mg-based nanocomposites(NC... The addition of nanoscale additions to magnesium(Mg)based alloys can boost mechanical characteristics without noticeably decreasing ductility.Since Mg is the lightest structural material,the Mg-based nanocomposites(NCs)with improved mechanical properties are appealing materials for lightweight structural applications.In contrast to conventional Mg-based composites,the incorporation of nano-sized reinforcing particles noticeably boosts the strength of Mg-based nanocomposites without significantly reducing the formability.The present article reviews Mg-based metal matrix nanocomposites(MMNCs)with metallic and ceramic additions,fabricated via both solid-based(sintering and powder metallurgy)and liquid-based(disintegrated melt deposition)technologies.It also reviews strengthening models and mechanisms that have been proposed to explain the improved mechanical characteristics of Mg-based alloys and nanocomposites.Further,synergistic strengthening mecha-nisms in Mg matrix nanocomposites and the dominant equations for quantitatively predicting mechanical properties are provided.Furthermore,this study offers an overview of the creep and fatigue behavior of Mg-based alloys and nanocomposites using both traditional(uniaxial)and depth-sensing indentation techniques.The potential applications of magnesium-based alloys and nanocomposites are also surveyed. 展开更多
关键词 Magnesium-based nanocomposites Nanoreinforcement Strengthening mechanisms creep properties Fatigue properties
下载PDF
Creep behavior and mechanical properties of Al-Li-S4 alloy at different aging temperatures 被引量:6
9
作者 ZHOU Chang ZHAN Li-hua +8 位作者 SHEN Ru-lin ZHAO Xing YU Hai-liang HUANG Ming-hui LI He YANG You-liang HU Li-bin LIU De-bo HU Zheng-gen 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1168-1175,共8页
Creep age forming techniques have been widely used in aerospace industries. In this study, we investigated the effect of aging temperature(143 °C-163 °C) on the creep behavior of Al-Li-S4 aluminum alloy and ... Creep age forming techniques have been widely used in aerospace industries. In this study, we investigated the effect of aging temperature(143 °C-163 °C) on the creep behavior of Al-Li-S4 aluminum alloy and their mechanical properties at room temperature. The mechanical properties were tested by tensile testing, and the microstructural evolution at different aging temperatures was examined by transmission electron microscopy. Results show that the creep strains and the room-temperature mechanical properties after creep aging increase with the aging temperature. As the aging temperature increases, the creep strain increases from 0.018% at 143 °C to 0.058% at 153 °C, and then to 0.094% at 163 °C. Within 25 h aging, the number of creep steps increases and the duration time of the same steps is shortened with the growth of aging temperatures. Therefore, the increase in aging temperatures accelerates the progress of the entire creep. Two main strengthening precipitates θ′(Al2 Cu) and T1(Al2 Cu Li) phases were characterized. This work indicates that the creep strain and mechanical properties of Al-Li-S4 alloys can be improved by controlling aging temperatures. 展开更多
关键词 Al-Li-S4 alloy creep behavior mechanical properties aging temperature
下载PDF
Re-evaluation of the mechanical properties and creep resistance of commercial magnesium die-casting alloy AE44 被引量:5
10
作者 Suming Zhu Trevor B.Abbott +4 位作者 Jian-Feng Nie Hua Qian Ang Dong Qiu Kazuhiro Nogita Mark A.Easton 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1552-1560,共9页
This paper presents a re-evaluation of the room temperature mechanical properties and high temperature creep resistance of magnesium die-casting alloy AE44(Mg-4Al-4RE)in light of the influence of minor Mn addition.It ... This paper presents a re-evaluation of the room temperature mechanical properties and high temperature creep resistance of magnesium die-casting alloy AE44(Mg-4Al-4RE)in light of the influence of minor Mn addition.It is shown that the Mn-containing AE44 exhibits distinct age hardening response upon direct ageing(T5)due to the precipitation of nanoscale Al-Mn particles,as reported previously in a similar alloy.The T5 ageing leads to a significant improvement in strength with similar ductility.Consequently,the T5-aged AE44 has a remarkably better strength-ductility combination than most Mg die-casting alloys and even the Al die-casting alloy A380.Minor Mn addition is also shown to be critical for the creep resistance of AE44 whereas the influence of the RE constituent is not as significant as previously thought,which reaffirms that precipitation hardening of theα-Mg matrix is more important than grain boundary reinforcement by intermetallic phases for the creep resistance of die-cast Mg alloys.The findings in this work could provide new application perspectives for AE44,particularly in the automotive industry. 展开更多
关键词 Magnesium alloys MANGANESE Precipitation hardening mechanical properties creep Die casting
下载PDF
Investigation on mechanical properties and creep behavior of stir cast AZ91-SiC_(p) composites 被引量:3
11
作者 Abhilash Viswanath H.Dieringa +2 位作者 K.K.Ajith Kumar U.T.S.Pillai B.C.Pai 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第1期16-22,共7页
The room temperature mechanical properties and high temperature creep behavior of AZ91 alloy reinforced with SiC_(p) synthesized via stir casting have been evaluated.The mechanical properties showed improvement with r... The room temperature mechanical properties and high temperature creep behavior of AZ91 alloy reinforced with SiC_(p) synthesized via stir casting have been evaluated.The mechanical properties showed improvement with respect to the amount of reinforcement content.The creep testing of the composites carried out at a temperature of 175 ℃ under constant stress of 80,100 and 120 MPa reveals different creep characteristics depending upon the reinforcement content and the applied load.The true stress exponents of different composites calculated from minimum creep rate indicate the possible mechanisms of creep deformation. 展开更多
关键词 COMPOSITES Optical microscopy mechanical properties creep characteristics
下载PDF
Influence of temperature on creep behavior,mechanical properties and microstructural evolution of an Al-Cu-Li alloy during creep age forming 被引量:2
12
作者 ZHOU Chang ZHAN Li-hua +2 位作者 LI He ZHAO Xing HUANG Ming-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2285-2294,共10页
The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa f... The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa for 20 h. Increasing temperature resulted in a noteworthy change in creep ageing behaviour, including a variation in creep curves, an improvement in creep rate during early creep ageing, and an increased creep strain. Tensile tests indicate that the specimen aged at higher temperature reached peak strength within a shorter time. Transmission electron microscopy(TEM) was employed to explore the effect of temperature on the microstructural evolution of the AA2198 during creep ageing deformation. Many larger dislocations and even tangled dislocation structures were observed in the sample aged at higher temperature. The number of T1 precipitates increased at higher ageing temperature at the same ageing time. Based on the analysed results, a new mechanism, considering the combined effects of the formation of larger dislocation structures induced by higher temperature and diffusion of solute atoms towards these larger or tangled dislocations, was proposed to explain the effect of temperature on microstructural evolution and creep behaviour. 展开更多
关键词 Al-Cu-Li alloys creep age forming mechanical properties MICROSTRUCTURE PRECIPITATION
下载PDF
Microstructures,mechanical properties and compressive creep behaviors of as-cast Mg-5%Sn-(0-1.0)%Pb alloys 被引量:2
13
作者 王卿 陈云贵 +3 位作者 肖素芬 刘红梅 唐永柏 赵源华 《Journal of Central South University》 SCIE EI CAS 2011年第2期290-295,共6页
The microstructures, tensile properties and compressive creep behaviors of Mg-5%Sn-(0-1.0)%Pb (mass fraction) alloys were studied. The microstructures of the Mg-Sn-Pb alloys consist of dendritic a-Mg and Mg2Sn pha... The microstructures, tensile properties and compressive creep behaviors of Mg-5%Sn-(0-1.0)%Pb (mass fraction) alloys were studied. The microstructures of the Mg-Sn-Pb alloys consist of dendritic a-Mg and Mg2Sn phase. The addition of Pb can refine the size of Mg2Sn phase and grain size, reduce the amount of Mg2Sn phase at grain or inter-dendrite boundaries and change the distribution of Mg2Sn phase. Pb exists in the Mg2Sn phase or dissolves in a-Mg matrix. The mechanical properties of the tested alloys at room temperature are improved with the addition of Pb. When the Pb content is over 0.5%, the mechanical properties are decreased gradually. The Mg-5%Sn-0.5%Pb shows the best ultimate tensile strength and elongation, 174 MPa and 14.3%, respectively. However, the compressive creep resistance of the Mg-Sn-Pb alloys is much lower than that of the Mg-Sn binary alloy at 175℃ with applied load of 55 MPa, which means that Pb has negative effects on the compressive creep resistance of the as-cast Mg-Sn alloys. 展开更多
关键词 Mg-Sn-Pb alloy MICROSTRUCTURES mechanical properties compressive creep Mg2Sn phase
下载PDF
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal 被引量:1
14
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel INTERFACE creep strain MICROSTRUCTURE Failure mechanism creep life
下载PDF
The Influence of Creep on the Mechanical Properties of Calcium Carbonate Nanofiller Reinforced Polypropylene
15
作者 Chrisopher Chukwutoo Ihueze Chinedum Ogonna Mgbemena Ugwu Sylveste 《Journal of Minerals and Materials Characterization and Engineering》 2011年第2期143-159,共17页
The study focused on experimental and classical data to establish some mechanical properties for optimum design of new polypropylene components to serve under creep environment. The creep studies recorded stress limit... The study focused on experimental and classical data to establish some mechanical properties for optimum design of new polypropylene components to serve under creep environment. The creep studies recorded stress limits that never exceeded 24.19MPa and maximum creep modulus that never exceeded 1.49GPa as against the predictions of classical equations that gave 2.0GPa for PPC0 and 2.46GPa for PPC2 at ambient conditions. The shear modulus and shear strength of the PPC0 and the PPC2 are predicted as 0.75GPa and 120MPa respectively and 0.92GPa and 150MPa respectively while the yield strengths found to be about 13.19MPa and 13.20MPa respectively for PPC0 and PPC2 at elastic strains 0.008 and 0.009 respectively. Further found are that as the material deforms the stiffness or modulus decrease, at low strains there is an elastic region, as temperature and applied stress increase the material becomes more flexible characterized with reduction in moduli. Plastic deformation at strains above 0.01 resulted to strain- hardening or strain-strengthening that manifested as the increasing area ratios and associated creep cold work. Also established by this study is a computational model for evaluating the elastic modulus of polypropylene matrix based material as expressed in equation (6). Both the Halphin-Tsai and the Birintrup equations for elastic modulus of unidirectional fibre composites were confirmed to be appropriate for prediction of elastic modulus of nanofiller composites with polymer matrix. 展开更多
关键词 Influence of creep mechanICAL properties CALCIUM CARBONATE NANOFILLER ReinforcedPolypropylene.
下载PDF
Precision loss of ball screw mechanism under sliding-rolling mixed motion behavior
16
作者 QI Bao-bao CHENG Qiang +2 位作者 LI Shun-lei LIU Zhi-feng YANG Cong-bin 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1357-1376,共20页
The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss consider... The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss considering different given axial loading and rotational speed working conditions was investigated.Since creep and lubrication relate to sliding and rolling motion wear,the creep and lubrication characteristics are analyzed under different working conditions.Besides,the precision loss was calculated considering the sole influence of sliding behavior between ball and screw and compared with the results from other current models.Finally,research on precision loss owing to the sliding-rolling mixed motion behavior was realized under given working conditions,and suitable wear tests were carried out.The analytical results of precision loss are in good agreement with the experimental test conclusions,which is conducive to better predicting the law of precision loss in stable wear period. 展开更多
关键词 ball screw mechanism precision loss sliding-rolling mixed motion creep lubrication
下载PDF
Effect of pre-deformation on aging creep of Al-Li-S4 alloy and its constitutive modeling 被引量:9
17
作者 王萌 湛利华 +2 位作者 杨有良 阳凌 黄明辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1383-1390,共8页
A set of uniaxial tensile creep tests at different pre-deformations, aging temperatures and stress levels were carried out for Al-Li-S4 alloy, and the creep behavior and the effects of pre-deformation on mechanical pr... A set of uniaxial tensile creep tests at different pre-deformations, aging temperatures and stress levels were carried out for Al-Li-S4 alloy, and the creep behavior and the effects of pre-deformation on mechanical properties and microstructures were determined under basic thermodynamics conditions of aging forming. The results show that pre-deformation shortens the time of primary creep and raises the second steady-state creep rate. Then, the total creep strain is greater, but in the range of test parameters it is still smaller than that without pre-deformation. In addition, transmission electron microscopy(TEM) observation shows that pre-deformation promotes the formation of T1 phase and θ′ phase and makes them distribute more dispersively, while inhibits the generation of δ′ phase, which leads to the improvement of mechanical properties of the alloy. A unified constitutive model reflecting the effects of aging mechanism, stress levels and different pre-deformations was established. The fitting results agree with the experimental data well. 展开更多
关键词 Al-Li-S4 alloy aging creep PRE-DEFORMATION mechanical properties microstructure constitutive model
下载PDF
Microstructure evolution and deformation features of single crystal nickel-based superalloy containing 4.2% Re during creep 被引量:1
18
作者 田素贵 梁福顺 +2 位作者 黎阿男 李晶晶 钱本江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1532-1537,共6页
By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single ... By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single crystal nickel-based superalloy containing 4.2% Re possesses a better creep resistance at high temperature.After being crept up to fracture,the various morphologies are displayed in the different areas of the sample,and the γ' phase is transformed into the rafted structure along the direction vertical to the applied stress axis in the regions far from the fracture.But the coarsening and twisting extents of the rafted γ' phase increase in the regions near the fracture,which is attributed to the occurrence of the larger plastic deformation.In the later stage of creep,the deformation mechanism of the alloy is that the dislocations with [01^-1]and [011] trace features shear into the rafted γ' phase.The main/secondary slipping dislocations are alternately activated to twist the rafted γ' phase up to the occurrence of creep fracture,which is thought to be the fracture mechanism of the alloy during creep. 展开更多
关键词 single crystal nickel-based superalloy RE creep microstructure evolution deformation mechanism
下载PDF
Effect of zinc addition on microstructure and mechanical properties of Mg-7Y-3Sm-0.5Zr alloy
19
作者 赵阳 王渠东 高岩 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1924-1929,共6页
The effect of zinc addition on the microstructure and mechanical properties of Mg-7Y-3Sm-0.5Zr casting alloy was investigated. Creep test was carried out at 200-300 °C under 50-120 MPa. Within the limits of the c... The effect of zinc addition on the microstructure and mechanical properties of Mg-7Y-3Sm-0.5Zr casting alloy was investigated. Creep test was carried out at 200-300 °C under 50-120 MPa. Within the limits of the creep test conditions used in this study, the creep activation energy of the investigated alloys was in the range of 156-221 kJ/mol. The microstructure evolution during creep was characterized by optical metallography, SEM and TEM. The results show that the creep life of the alloy is increased from 52.2 to 152.8 h at 300 °C under 50 MPa by only 1% addition of Zn, though both the alloys have similar creep behaviors below 250 °C, which suggests that the thermally stable compound and lamellar structure can improve the high temperature creep resistance of the alloy with the addition of Zn. 展开更多
关键词 Mg-Y-Sm-Zr alloy ZINC microstructure mechanical properties creep behavior
下载PDF
High temperature mechanical behavior of alumina dispersion strengthened copper alloy with high content of alumina 被引量:6
20
作者 向紫琪 李周 +2 位作者 雷前 肖柱 庞咏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期444-450,共7页
The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alum... The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alumina particles are uniformly distributed in the copper matrix, while a few coarse ones are distributed on the grain boundaries. Tensile tests results show that Hall-Petch mechanism is the main contribution to the yield strength of ADSC alloy at room temperature. Its high temperature strength is attributed to the strong pinning effects of alumina particles on the grain and sub-grain boundaries with dislocations. The ultimate tensile strength can reach 237 MPa and the corresponding yield strength reaches 226 MPa at 700℃. Tensile fracture morphology indicates that the ADSC alloy shows brittleness at elevated temperatures. Creep tests results demonstrate that the steady state creep rates at 400 ℃ are lower than those at 700 ℃. The stress exponents at 400 ℃ and 700℃ are 7 and 5, respectively, and the creep strain rates of the ADSC alloy are controlled by dislocation core diffusion and lattice diffusion. 展开更多
关键词 copper alloys alumina dispersion strengthened alloy high temperature mechanical behavior creep behavior FRACTURE strengthening mechanism
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部