The authors propose a new approach to construct subclasses of biholomorphic mappings with special geometric properties in several complex variables. The RoperSuffridge operator on the unit ball B^n in C^n is modified....The authors propose a new approach to construct subclasses of biholomorphic mappings with special geometric properties in several complex variables. The RoperSuffridge operator on the unit ball B^n in C^n is modified. By the analytical characteristics and the growth theorems of subclasses of spirallike mappings, it is proved that the modified Roper-Suffridge operator [Φ_(G,γ)(f)](z) preserves the properties of S_Ω~*(A, B), as well as strong and almost spirallikeness of type β and order α on B^n. Thus, the mappings in S_Ω~*(A, B), as well as strong and almost spirallike mappings, can be constructed through the corresponding functions in one complex variable. The conclusions follow some special cases and contain the elementary results.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11271359,11471098)the Joint Funds of the National Natural Science Foundation of China(No.U1204618)the Science and Technology Research Projects of Henan Provincial Education Department(Nos.14B110015,14B110016)
文摘The authors propose a new approach to construct subclasses of biholomorphic mappings with special geometric properties in several complex variables. The RoperSuffridge operator on the unit ball B^n in C^n is modified. By the analytical characteristics and the growth theorems of subclasses of spirallike mappings, it is proved that the modified Roper-Suffridge operator [Φ_(G,γ)(f)](z) preserves the properties of S_Ω~*(A, B), as well as strong and almost spirallikeness of type β and order α on B^n. Thus, the mappings in S_Ω~*(A, B), as well as strong and almost spirallike mappings, can be constructed through the corresponding functions in one complex variable. The conclusions follow some special cases and contain the elementary results.