A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (...A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean Square (NLMS) algorithms is described. Simulation results showed that the less complexity MI-NLMS yields 15 dB improvements in interference suppression and 5 dB gain enhancement over LMS algorithm, converges from the initial iteration and achieves 24% BER improvements at cochannel interference equal to 5. For the case of 4-element uniform linear array antenna, MI-NLMS achieved 76% BER reduction over LMS algorithm.展开更多
在对变步长归一化最小均方误差(Variable step size normalized least mean square,VSS-NLMS)的几种算法以及各个算法在远端和双端通话模式下的性能分析比较的基础上,对NEW-NPVSS(NEW non-parametricVSS)算法进行了改进。在双端通话的...在对变步长归一化最小均方误差(Variable step size normalized least mean square,VSS-NLMS)的几种算法以及各个算法在远端和双端通话模式下的性能分析比较的基础上,对NEW-NPVSS(NEW non-parametricVSS)算法进行了改进。在双端通话的情况下改进算法具有更好的收敛性;然后提出了基于滤波器系数梯度的变步长新算法,当滤波器系数梯度小于门限值时,采用固定步长更新滤波器系数。反之,则停止更新滤波器系数,并且用远端模式下的系数替代当前系数。仿真结果表明所提出的算法在远端通话模式下比其他VSS-NLMS算法具有更好的收敛性,在双端情况下具有比固定步长NLMS(Normalized least mean square)和SVSS(Simple VSS)更好的收敛性。展开更多
A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization f...A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm.展开更多
In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coef...In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coefcient. Inspired by this result, a modified PNLMS algorithm based on precise magnitude estimate is proposed. The simulation results indicate that in contrast to the traditional PNLMS algorithm, the proposed algorithm achieves faster convergence speed in the initial convergence state and lower misalignment in the stead stage with much less computational complexity.展开更多
Currently,the growth of micro and nano(very large scale integration-ultra large-scale integration)electronics technology has greatly impacted biomedical signal processing devices.These high-speed micro and nano techno...Currently,the growth of micro and nano(very large scale integration-ultra large-scale integration)electronics technology has greatly impacted biomedical signal processing devices.These high-speed micro and nano technology devices are very reliable despite their capacity to operate at tremendous speed,and can be designed to consume less power in minimum response time,which is particularly useful in biomedical products.The rapid technological scaling of the metal-oxide-semi-conductor(MOS)devices aids in mapping multiple applications for a specific purpose on a single chip which motivates us to design a sophisticated,small and reliable application specific integrated circuit(ASIC)chip for future real time medical signal separation and processing(digital stetho-scopes and digital microelectromechanical systems(MEMS)microphone).In this paper,ASIC level implementation of the adaptive line enhancer design using adaptive filtering algorithms(least mean square(LMS)and normalized least mean square(NLMS))integrated design is used to separate the real-time auscultation sound signals effectively.Adaptive line enhancer(ALE)design is imple-mented in Verilog hardware description language(HDL)language to obtain both the network and adaptive algorithm in cadence Taiwan Semiconductor Manufacturing Company(TSMC)90 nm standard cell library environment for ASIC level implementation.Native compiled simulator(NC)sim and RC lab were used for functional verification and design constraints and the physical design is implemented in Encounter to obtain the Geometric Data Stream(GDS II).In this architecture,the area occupied is 0.08 mm,the total power consumed is 5.05 mW and the computation time of the proposed system is 0.82μs for LMS design and the area occupied is 0.14 mm,the total power consumed is 4.54 mW and the computation time of the proposed system is 0.03μs for NLMS design that will pave a better way in future electronic stethoscope design.展开更多
基金Project supported by the IRPA Secretariat, Ministry of Science,Technology and Environment of Malaysia (No. 04-02-02-0029) andthe Zamalah Scheme
文摘A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean Square (NLMS) algorithms is described. Simulation results showed that the less complexity MI-NLMS yields 15 dB improvements in interference suppression and 5 dB gain enhancement over LMS algorithm, converges from the initial iteration and achieves 24% BER improvements at cochannel interference equal to 5. For the case of 4-element uniform linear array antenna, MI-NLMS achieved 76% BER reduction over LMS algorithm.
文摘在对变步长归一化最小均方误差(Variable step size normalized least mean square,VSS-NLMS)的几种算法以及各个算法在远端和双端通话模式下的性能分析比较的基础上,对NEW-NPVSS(NEW non-parametricVSS)算法进行了改进。在双端通话的情况下改进算法具有更好的收敛性;然后提出了基于滤波器系数梯度的变步长新算法,当滤波器系数梯度小于门限值时,采用固定步长更新滤波器系数。反之,则停止更新滤波器系数,并且用远端模式下的系数替代当前系数。仿真结果表明所提出的算法在远端通话模式下比其他VSS-NLMS算法具有更好的收敛性,在双端情况下具有比固定步长NLMS(Normalized least mean square)和SVSS(Simple VSS)更好的收敛性。
基金supported by the National Natural Science Foundation of China(61571131 11604055)
文摘A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm.
文摘In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coefcient. Inspired by this result, a modified PNLMS algorithm based on precise magnitude estimate is proposed. The simulation results indicate that in contrast to the traditional PNLMS algorithm, the proposed algorithm achieves faster convergence speed in the initial convergence state and lower misalignment in the stead stage with much less computational complexity.
文摘Currently,the growth of micro and nano(very large scale integration-ultra large-scale integration)electronics technology has greatly impacted biomedical signal processing devices.These high-speed micro and nano technology devices are very reliable despite their capacity to operate at tremendous speed,and can be designed to consume less power in minimum response time,which is particularly useful in biomedical products.The rapid technological scaling of the metal-oxide-semi-conductor(MOS)devices aids in mapping multiple applications for a specific purpose on a single chip which motivates us to design a sophisticated,small and reliable application specific integrated circuit(ASIC)chip for future real time medical signal separation and processing(digital stetho-scopes and digital microelectromechanical systems(MEMS)microphone).In this paper,ASIC level implementation of the adaptive line enhancer design using adaptive filtering algorithms(least mean square(LMS)and normalized least mean square(NLMS))integrated design is used to separate the real-time auscultation sound signals effectively.Adaptive line enhancer(ALE)design is imple-mented in Verilog hardware description language(HDL)language to obtain both the network and adaptive algorithm in cadence Taiwan Semiconductor Manufacturing Company(TSMC)90 nm standard cell library environment for ASIC level implementation.Native compiled simulator(NC)sim and RC lab were used for functional verification and design constraints and the physical design is implemented in Encounter to obtain the Geometric Data Stream(GDS II).In this architecture,the area occupied is 0.08 mm,the total power consumed is 5.05 mW and the computation time of the proposed system is 0.82μs for LMS design and the area occupied is 0.14 mm,the total power consumed is 4.54 mW and the computation time of the proposed system is 0.03μs for NLMS design that will pave a better way in future electronic stethoscope design.