The van Genuchten model is the most widely used soil water retention curve (SWRC) model. Two undisturbed soils (clay and loam) were used to evaluate the accuracy of the integral method to estimate van Genuchten mo...The van Genuchten model is the most widely used soil water retention curve (SWRC) model. Two undisturbed soils (clay and loam) were used to evaluate the accuracy of the integral method to estimate van Genuchten model parameters and to determine SWRCs of undisturbed soils. SWRCs calculated by the integral method were compared with those measured by a high speed centrifuge technique. The accuracy of the calculated results was evaluated graphically, as well as by root mean square error (RMSE), normalized root mean square error (NRMSE) and Willmott's index of agreement (1). The results obtained from the integral method were quite similar to those by the centrifuge technique. The RMSEs (4.61 ×10^-5 for Eum-Orthic Anthrosol and 2.74 × 10^-4 for Los-Orthic Entisol) and NRMSEs (1.56 × 10^-4 for Eum- Orthic Anthrosol and 1.45 ×10^-3 for Los-Orthic Entisol) were relatively small. The 1 values were 0.973 and 0.943 for Eum-Orthic Anthrosol and Los-Orthic Entisol, respectively, indicating a good agreement between the integral method values and the centrifuge values. Therefore, the integral method could be used to estimate SWRCs of undisturbed clay and loam soils.展开更多
Salinization is a gradual process that should be monitored.Modelling is a suitable alternative technique that saves time and cost for the field monitoring.But the performance of the models should be evaluated using th...Salinization is a gradual process that should be monitored.Modelling is a suitable alternative technique that saves time and cost for the field monitoring.But the performance of the models should be evaluated using the measured data.Therefore,the aim of this study was to evaluate and compare the SALTMED and HYDRUS-1D models using the measured soil water content,soil salinity and wheat yield data under different levels of saline irrigation water and groundwater depth.The field experiment was conducted in 2013 and in this research three controlled groundwater depths,i.e.,60(CD60),80(CD80)and 100(CD100)cm and two salinity levels of irrigation water,i.e.,4(EC4)and 8(EC8)dS/m were used in a complete randomized design with three replications.Soil water content and soil salinity were measured in soil profile and compared with the predicted values by the SALTMED and HYDRUS-1D models.Calibrations of the SALTMED and HYDRUS-1D models were carried out using the measured data under EC4-CD100 treatment and the data of the other treatments were used for validation.The statistical parameters including normalized root mean square error(NRMSE)and degree of agreement(d)showed that the values for predicting soil water content and soil salinity were more accurate in the HYDRUS-1D model than in the SALTMED model.The NRMSE and d values of the HYDRUS-1D model were 9.6%and 0.64 for the predicted soil water content and 6.2%and 0.98 for the predicted soil salinity,respectively.These indices of the SALTMED model were 10.6%and 0.81 for the predicted soil water content and 11.0%and 0.97 for the predicted soil salinity,respectively.According to the NRMSE and d values for the predicted wheat yield(9.8%and 0.91,respectively)and dry matter(2.9%and 0.99,respectively),we concluded that the SALTMED model predicted the wheat yield and dry matter accurately.展开更多
This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmi...This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmitters and the uplink receiver will destroy orthogonality among different subcarriers, hence resulting in inter-carrier interference and multiuser interference. A two-stage frequency offset estimation algorithm based on subspace processing is proposed. The main advantage of the proposed method is that it can obtain the CFOs of all users simultaneously using only one OFDMA block. Compared with the previously known methods, it not only has a relatively low implementation complexity but is also suitable for random subchannel assignment.展开更多
Based on daily mean temperature records from 1961 to 2007 at 20 meteorological sites in Southwest Yunnan, and the surface temperature simulated by IPCC AR4 Climate Models, a quantitative examination was undertaken int...Based on daily mean temperature records from 1961 to 2007 at 20 meteorological sites in Southwest Yunnan, and the surface temperature simulated by IPCC AR4 Climate Models, a quantitative examination was undertaken into the characteristics of multi-timescale temperature (AMT, DMT and WMT) variation in Southwest Yunnan. The simulation abilities of the models were also evaluated with the normalized root mean square error (NRMSE) and Mann-Kendal test statistic methods. Temperatures show remarkable increasing trend from 1961 to 2007, with the Mann-Kendall test statistic passing 95% confidence verification. The result of the NRMSE analysis shows that the simulated temperature anomaly variations are more similar to observed ones especially for AMT and DMT, and the projected result (anomalies) of IPCC AR4 climate models can be used for predicting the trends in multi-timescale temperature variation in Southwest Yunnan in the next 40 years under the three emission scenarios, which has better simulating effect on AMT and DMT than WMT. Over the next 40 years the temperature will continue to rise, with annual mean temperature showing a more remarkable rising trend than that of the dry and wet seasons. Temperature anomalies exhibit different increasing rates under different emission scenarios: During the 2020s the rising rates of multi-timescale temperature anomalies in a high greenhouse gases emissions scenario (SRESA2) are smaller than those under a low emission scenario (SRESB1). Except that, the rate of increase in temperature anomalies are the highest in the intermediate emissions scenario (SRESA1B), followed by those in SRESA2, and those in low emissions scenario (SRESB1) are the lowest. The reason of different simulating effects on WMT from AMT and DMT was also discussed.展开更多
Automobile companies that spend billions of dollars annually towards warranty cost, give high priority to warranty reduction programs. Forecasting of automobile warranty performance plays an important role towards the...Automobile companies that spend billions of dollars annually towards warranty cost, give high priority to warranty reduction programs. Forecasting of automobile warranty performance plays an important role towards these efforts. The forecasting process involves prediction of not only the specific months-in-service (MIS) warranty performance at certain future time, but also at future MIS values. However, 'maturing data' (also called warranty growth) phenomena that causes warranty performance at specific MIS values to change with time, makes such a forecasting task challenging. Although warranty forecasting methods such as log-log plots and dynamic linear models appear in literature, there is a need for applications addressing the well recognized issue of ‘maturing data’. In this paper we use an artificial neural network for the forecasting of warranty performance in presence of ‘maturing data’ phenomena. The network parameters are optimized by minimizing the training and testing errors using response surface methodology. This application shows the effectiveness of neural networks in the forecasting of automobile warranty performance in the presence of the ‘maturing data’ phenomena.展开更多
基金Project supported by the International Partnership Program for Creative Research Teams of the Chinese Academy of Sciences (CAS) & the State Administration of Foreign Experts Affairs (SAFEA), China, and the Hundreds-Talent Program of the Chinese Academy of Sciences, China (No. 90502006)
文摘The van Genuchten model is the most widely used soil water retention curve (SWRC) model. Two undisturbed soils (clay and loam) were used to evaluate the accuracy of the integral method to estimate van Genuchten model parameters and to determine SWRCs of undisturbed soils. SWRCs calculated by the integral method were compared with those measured by a high speed centrifuge technique. The accuracy of the calculated results was evaluated graphically, as well as by root mean square error (RMSE), normalized root mean square error (NRMSE) and Willmott's index of agreement (1). The results obtained from the integral method were quite similar to those by the centrifuge technique. The RMSEs (4.61 ×10^-5 for Eum-Orthic Anthrosol and 2.74 × 10^-4 for Los-Orthic Entisol) and NRMSEs (1.56 × 10^-4 for Eum- Orthic Anthrosol and 1.45 ×10^-3 for Los-Orthic Entisol) were relatively small. The 1 values were 0.973 and 0.943 for Eum-Orthic Anthrosol and Los-Orthic Entisol, respectively, indicating a good agreement between the integral method values and the centrifuge values. Therefore, the integral method could be used to estimate SWRCs of undisturbed clay and loam soils.
基金This research was supported in part by the Project of the Shiraz University Research Council,Iran(94GCU5M1923)。
文摘Salinization is a gradual process that should be monitored.Modelling is a suitable alternative technique that saves time and cost for the field monitoring.But the performance of the models should be evaluated using the measured data.Therefore,the aim of this study was to evaluate and compare the SALTMED and HYDRUS-1D models using the measured soil water content,soil salinity and wheat yield data under different levels of saline irrigation water and groundwater depth.The field experiment was conducted in 2013 and in this research three controlled groundwater depths,i.e.,60(CD60),80(CD80)and 100(CD100)cm and two salinity levels of irrigation water,i.e.,4(EC4)and 8(EC8)dS/m were used in a complete randomized design with three replications.Soil water content and soil salinity were measured in soil profile and compared with the predicted values by the SALTMED and HYDRUS-1D models.Calibrations of the SALTMED and HYDRUS-1D models were carried out using the measured data under EC4-CD100 treatment and the data of the other treatments were used for validation.The statistical parameters including normalized root mean square error(NRMSE)and degree of agreement(d)showed that the values for predicting soil water content and soil salinity were more accurate in the HYDRUS-1D model than in the SALTMED model.The NRMSE and d values of the HYDRUS-1D model were 9.6%and 0.64 for the predicted soil water content and 6.2%and 0.98 for the predicted soil salinity,respectively.These indices of the SALTMED model were 10.6%and 0.81 for the predicted soil water content and 11.0%and 0.97 for the predicted soil salinity,respectively.According to the NRMSE and d values for the predicted wheat yield(9.8%and 0.91,respectively)and dry matter(2.9%and 0.99,respectively),we concluded that the SALTMED model predicted the wheat yield and dry matter accurately.
基金the Specialized Research Fund for the Doctoral Program of Higher Education, China Ministry of Education (No.20030003039).
文摘This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmitters and the uplink receiver will destroy orthogonality among different subcarriers, hence resulting in inter-carrier interference and multiuser interference. A two-stage frequency offset estimation algorithm based on subspace processing is proposed. The main advantage of the proposed method is that it can obtain the CFOs of all users simultaneously using only one OFDMA block. Compared with the previously known methods, it not only has a relatively low implementation complexity but is also suitable for random subchannel assignment.
基金National Natural Science Foundation of China (40901050), National Basic Research Program of China (No. 2012CB955903)Scientific Research Fund Project of Yunnan Provincial Department of Education (No. 09Y0284, "Technology Research of Adaptation and Mitigation to Yunnan Climate Change")
文摘Based on daily mean temperature records from 1961 to 2007 at 20 meteorological sites in Southwest Yunnan, and the surface temperature simulated by IPCC AR4 Climate Models, a quantitative examination was undertaken into the characteristics of multi-timescale temperature (AMT, DMT and WMT) variation in Southwest Yunnan. The simulation abilities of the models were also evaluated with the normalized root mean square error (NRMSE) and Mann-Kendal test statistic methods. Temperatures show remarkable increasing trend from 1961 to 2007, with the Mann-Kendall test statistic passing 95% confidence verification. The result of the NRMSE analysis shows that the simulated temperature anomaly variations are more similar to observed ones especially for AMT and DMT, and the projected result (anomalies) of IPCC AR4 climate models can be used for predicting the trends in multi-timescale temperature variation in Southwest Yunnan in the next 40 years under the three emission scenarios, which has better simulating effect on AMT and DMT than WMT. Over the next 40 years the temperature will continue to rise, with annual mean temperature showing a more remarkable rising trend than that of the dry and wet seasons. Temperature anomalies exhibit different increasing rates under different emission scenarios: During the 2020s the rising rates of multi-timescale temperature anomalies in a high greenhouse gases emissions scenario (SRESA2) are smaller than those under a low emission scenario (SRESB1). Except that, the rate of increase in temperature anomalies are the highest in the intermediate emissions scenario (SRESA1B), followed by those in SRESA2, and those in low emissions scenario (SRESB1) are the lowest. The reason of different simulating effects on WMT from AMT and DMT was also discussed.
文摘Automobile companies that spend billions of dollars annually towards warranty cost, give high priority to warranty reduction programs. Forecasting of automobile warranty performance plays an important role towards these efforts. The forecasting process involves prediction of not only the specific months-in-service (MIS) warranty performance at certain future time, but also at future MIS values. However, 'maturing data' (also called warranty growth) phenomena that causes warranty performance at specific MIS values to change with time, makes such a forecasting task challenging. Although warranty forecasting methods such as log-log plots and dynamic linear models appear in literature, there is a need for applications addressing the well recognized issue of ‘maturing data’. In this paper we use an artificial neural network for the forecasting of warranty performance in presence of ‘maturing data’ phenomena. The network parameters are optimized by minimizing the training and testing errors using response surface methodology. This application shows the effectiveness of neural networks in the forecasting of automobile warranty performance in the presence of the ‘maturing data’ phenomena.