Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable dete...Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable detection. This process requires two critical steps: optical-elevation data co-registration and aboveground elevation calculation. These two steps are still challenging to some extent. Therefore, this paper introduces optical-elevation data co-registration and normalization techniques for generating a dataset that facilitates elevation-based building detection. For achieving accurate co-registration, a dense set of stereo-based elevations is generated and co-registered to their relevant image based on their corresponding image locations. To normalize these co-registered elevations, the bare-earth elevations are detected based on classification information of some terrain-level features after achieving the image co-registration. The developed method was executed and validated. After implementation, 80% overall-quality of detection result was achieved with 94% correct detection. Together, the developed techniques successfully facilitate the incorporation of stereo-based elevations for detecting buildings in VHR remote sensing images.展开更多
The positron annihilation lifetime and Doppler broadened line-shapeparameter have been measured between 77 and 300 K for Bi<sub>1.8</sub>Pb<sub>0.1</sub>Sb<sub>0.1</sub>Sr<sub>...The positron annihilation lifetime and Doppler broadened line-shapeparameter have been measured between 77 and 300 K for Bi<sub>1.8</sub>Pb<sub>0.1</sub>Sb<sub>0.1</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub>,Bi<sub>1.8</sub>Sb<sub>0.2</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub> and Bi<sub>1.7</sub>Pb<sub>0.2</sub>Sb<sub>0.1</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>2</sub>O<sub>x</sub>. The charge transfer from Cu-Olayers to Bi-O layers has been observed across T<sub>c</sub>s for all samples.Three samples allshow two normal state anomalies around 160 K and 240 K,respectively.The anomalyaround 160 K is attributed to the structural instability and that around 240 Kpresumably to the displacement phase transition.展开更多
The reliability and reliability sensitivity ( RS ) models are presented for the engineering problem involving truncated correlated normal variables (CNV), and in the case an adaptive radial based sampling is used ...The reliability and reliability sensitivity ( RS ) models are presented for the engineering problem involving truncated correlated normal variables (CNV), and in the case an adaptive radial based sampling is used to analyze the reliability and the RS. In the presented models, the truncated CNV is transformed to general CNV, and the value domains of the truncated CNV are treated as multiple failure modes, then the reliability and the RS with the truncated CNV are transformed to the general cases, on which an e^cient radial based sampling is used to analyze the trans- formed reliability and RS. An adaptive strategy is employed to search for the optimal radial in the sampling, by which the robustness of the method is improved. After the model concepts and the detailed implementation are given, several examples are presented to demonstrate the feasibility of the model and the efficiency of the solutions.展开更多
After an international contest announced by the City of Abu Dhabi “Cool Abu Dhabi Challenge”<sup>1</sup> and the article published as a digest of a paper titled A Nature-based Solution [1], the decision ...After an international contest announced by the City of Abu Dhabi “Cool Abu Dhabi Challenge”<sup>1</sup> and the article published as a digest of a paper titled A Nature-based Solution [1], the decision has been made to take part in improving thermal comfort in public spaces by mitigating the impact of the effect of Urban Heat Islands (UHI)<sup>2</sup> in the city of the Belgrade. The basic research aims at achieving the balance between the conflicting impacts when the buildings with their infrastructure and water-green surrounding area are in such correlation that it fulfils acceptable living and heating standards and reduces the use of fossil fuels for cooling the urban areas (buildings). By implementing the remote detection it is possible to analyze and quantify the impact of over-building on the temperature rise in urban areas as well as the disturbance of the heating comfort and the increased demand for additional cooling. Now it is possible to create virtual models that will incorporate this newly-added urban vegetation into urban plans, depending on the evaporation potential that will affect the microclimate of the urban area. Such natural cooling can be measured and adapted and hence aimed at a potential decrease in areas with UHI emissions [2]. Suitable greenery in the summer season can be a useful improvement which concurrently enables and complements several cooling mechanisms—evaporative cooling and evapotranspiration, i.e. natural cooling systems. The remote detection shall establish and map the “healthy” and “unhealthy” greenery zones—that is the vegetation zones with the highest evaporative potential with the “cooling by evaporation” effect and also, by implementing the urban prediction model, it shall propose green infrastructure corridors aimed at a potential decrease in the Urban Heat Island Emission.展开更多
文摘Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable detection. This process requires two critical steps: optical-elevation data co-registration and aboveground elevation calculation. These two steps are still challenging to some extent. Therefore, this paper introduces optical-elevation data co-registration and normalization techniques for generating a dataset that facilitates elevation-based building detection. For achieving accurate co-registration, a dense set of stereo-based elevations is generated and co-registered to their relevant image based on their corresponding image locations. To normalize these co-registered elevations, the bare-earth elevations are detected based on classification information of some terrain-level features after achieving the image co-registration. The developed method was executed and validated. After implementation, 80% overall-quality of detection result was achieved with 94% correct detection. Together, the developed techniques successfully facilitate the incorporation of stereo-based elevations for detecting buildings in VHR remote sensing images.
基金The project supported by IAEA under the Contract No.5295/RBby China National Nuclear Corporation.
文摘The positron annihilation lifetime and Doppler broadened line-shapeparameter have been measured between 77 and 300 K for Bi<sub>1.8</sub>Pb<sub>0.1</sub>Sb<sub>0.1</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub>,Bi<sub>1.8</sub>Sb<sub>0.2</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub> and Bi<sub>1.7</sub>Pb<sub>0.2</sub>Sb<sub>0.1</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>2</sub>O<sub>x</sub>. The charge transfer from Cu-Olayers to Bi-O layers has been observed across T<sub>c</sub>s for all samples.Three samples allshow two normal state anomalies around 160 K and 240 K,respectively.The anomalyaround 160 K is attributed to the structural instability and that around 240 Kpresumably to the displacement phase transition.
基金support of the Natural Science Foundation of China (NSFC10572117and 50875213)Aviation Science Foundation(2007ZA53012)863 Project (2007AA04Z401)
文摘The reliability and reliability sensitivity ( RS ) models are presented for the engineering problem involving truncated correlated normal variables (CNV), and in the case an adaptive radial based sampling is used to analyze the reliability and the RS. In the presented models, the truncated CNV is transformed to general CNV, and the value domains of the truncated CNV are treated as multiple failure modes, then the reliability and the RS with the truncated CNV are transformed to the general cases, on which an e^cient radial based sampling is used to analyze the trans- formed reliability and RS. An adaptive strategy is employed to search for the optimal radial in the sampling, by which the robustness of the method is improved. After the model concepts and the detailed implementation are given, several examples are presented to demonstrate the feasibility of the model and the efficiency of the solutions.
文摘After an international contest announced by the City of Abu Dhabi “Cool Abu Dhabi Challenge”<sup>1</sup> and the article published as a digest of a paper titled A Nature-based Solution [1], the decision has been made to take part in improving thermal comfort in public spaces by mitigating the impact of the effect of Urban Heat Islands (UHI)<sup>2</sup> in the city of the Belgrade. The basic research aims at achieving the balance between the conflicting impacts when the buildings with their infrastructure and water-green surrounding area are in such correlation that it fulfils acceptable living and heating standards and reduces the use of fossil fuels for cooling the urban areas (buildings). By implementing the remote detection it is possible to analyze and quantify the impact of over-building on the temperature rise in urban areas as well as the disturbance of the heating comfort and the increased demand for additional cooling. Now it is possible to create virtual models that will incorporate this newly-added urban vegetation into urban plans, depending on the evaporation potential that will affect the microclimate of the urban area. Such natural cooling can be measured and adapted and hence aimed at a potential decrease in areas with UHI emissions [2]. Suitable greenery in the summer season can be a useful improvement which concurrently enables and complements several cooling mechanisms—evaporative cooling and evapotranspiration, i.e. natural cooling systems. The remote detection shall establish and map the “healthy” and “unhealthy” greenery zones—that is the vegetation zones with the highest evaporative potential with the “cooling by evaporation” effect and also, by implementing the urban prediction model, it shall propose green infrastructure corridors aimed at a potential decrease in the Urban Heat Island Emission.