期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Anisotropic dynamic permeability model for porous media
1
作者 PEI Xuehao LIU Yuetian +3 位作者 LIN Ziyu FAN Pingtian MI Liao XUE Liang 《Petroleum Exploration and Development》 SCIE 2024年第1期193-202,共10页
Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was ... Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was verified using pore-scale flow simulation.The uniaxial strain process was calculated and the main factors affecting permeability changes in different directions in the deformation process were analyzed.In the process of uniaxial strain during the exploitation of layered oil and gas reservoirs,the effect of effective surface porosity on the permeability in all directions is consistent.With the decrease of effective surface porosity,the sensitivity of permeability to strain increases.The sensitivity of the permeability perpendicular to the direction of compression to the strain decreases with the increase of the tortuosity,while the sensitivity of the permeability in the direction of compression to the strain increases with the increase of the tortuosity.For layered reservoirs with the same initial tortuosity in all directions,the tortuosity plays a decisive role in the relative relationship between the variations of permeability in all directions during pressure drop.When the tortuosity is less than 1.6,the decrease rate of horizontal permeability is higher than that of vertical permeability,while the opposite is true when the tortuosity is greater than 1.6.This phenomenon cannot be represented by traditional dynamic permeability model.After the verification by experimental data of pore-scale simulation,the new model has high fitting accuracy and can effectively characterize the effects of deformation in different directions on the permeability in all directions. 展开更多
关键词 porous media dynamic permeability ANISOTROPY capillary network model TORTUOSITY normal strain flow simulation permeability change characteristics
下载PDF
A fracture model for assessing tensile mode crack growth resistance of rocks 被引量:1
2
作者 Mingdong Wei Feng Dai +1 位作者 Yi Liu Ruochen Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期395-411,共17页
Evaluating the fracture resistance of rocks is essential for predicting and preventing catastrophic failure of cracked structures in rock engineering.This investigation developed a brittle fracture model to predict te... Evaluating the fracture resistance of rocks is essential for predicting and preventing catastrophic failure of cracked structures in rock engineering.This investigation developed a brittle fracture model to predict tensile mode(mode I)failure loads of cracked rocks.The basic principle of the model is to estimate the reference crack corresponding to the fracture process zone(FPZ)based on the maximum normal strain(MNSN)ahead of the crack tip,and then use the effective crack to calculate the fracture toughness.We emphasize that the non-singular stress/strain terms should be considered in the description of the MNSN.In this way,the FPZ,non-singular terms and the biaxial stress state at the crack tip are simul-taneously considered.The principle of the model is explicit and easy to apply.To verify the proposed model,laboratory experiments were performed on a rock material using six groups of specimens.The model predicted the specimen geometry dependence of the measured fracture toughness well.More-over,the potential of the model in analyzing the size effect of apparent fracture toughness was discussed and validated through experimental data reported in the literature.The model was demonstrated su-perior to some commonly used fracture models and is an excellent tool for the safety assessment of cracked rock structures. 展开更多
关键词 Brittle fracture model Fracture toughness Maximum normal strain(MNSN) Fracture process zone(FPZ) Size effect
下载PDF
Effects of vertical electric field and compressive strain on electronic properties of bilayer ZrS2 被引量:2
3
作者 Jimin Shang Le Huang Zhongming Wei 《Journal of Semiconductors》 EI CAS CSCD 2017年第3期59-62,共4页
Using first-principles calculations,including Grimme D2 method for van der Waals interactions,we investigate the tuning electronic properties of bilayer zirconium disulfides(ZrS_2/ subjected to vertical electric fiel... Using first-principles calculations,including Grimme D2 method for van der Waals interactions,we investigate the tuning electronic properties of bilayer zirconium disulfides(ZrS_2/ subjected to vertical electric field and normal compressive strain.The band gap of ZrS_2 bilayer can be flexibly tuned by vertical external electric field.Due to the Stark effect,at critical electric fields about 1.4 V/?,semiconducting-metallic transition presents.In addition,our results also demonstrated that the compressive strain has an important impact on the electronic properties of ZrS_2 bilayer sheet.The widely tunable band gaps confirm possibilities for its applications in electronics and optoelectronics. 展开更多
关键词 vertical electric field normal compressive strain electronic properties zirconium disulfides bilayer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部