[Objective] The research aimed to analyze variation characteristics of the temperature and precipitation in north slope area of the Western Tianshan in recent 50 years.[Method] According to temperature and rainfall da...[Objective] The research aimed to analyze variation characteristics of the temperature and precipitation in north slope area of the Western Tianshan in recent 50 years.[Method] According to temperature and rainfall data from 1961 to 2010 at three meteorological stations in north slope area of the Western Tianshan,climate change in the zone in recent 50 years was analyzed by using linear trend analysis method and 5-year sliding average method.[Result] The temperature in north slope area of the Western Tianshan showed significant warming trend.The annual average temperature significantly increased at 0.3 ℃/10 a in recent 50 years.But rise rates of the temperature in different seasons were different:autumn> winter> spring> summer.The annual rainfall in north slope area of the Western Tianshan in recent 50 years overall presented relative increase trend.Seen from annual rainfall,it significantly increased at 16.9 mm/10 a.Seen from seasonal rainfall,except in autumn,rainfalls in other three seasons in the past 50 years all showed significant increase trends,with amplitude of 3.2-11.2 mm/10 a.The largest increase amplitude was in summer.After a small precipitation peak in the 1980s,autumn rainfall slightly declined in the past 20 years.[Conclusion] The climate in north slope area of the Western Tianshan become warm and wet.展开更多
New structural and petrological data unveil a very complicated ductile deformation history of the Xiongdian-Suhe HP metamorphic unit, north-western Dabie Shan, central China. The fine-grained symplectic amphibolite-fa...New structural and petrological data unveil a very complicated ductile deformation history of the Xiongdian-Suhe HP metamorphic unit, north-western Dabie Shan, central China. The fine-grained symplectic amphibolite-facies assemblage and coronal structure enveloping eclogite-facies garnet, omphacite and phengite etc., representing strain-free decompression and retrogressive metamorphism, are considered as the main criteria to distinguish between the early-stage deformation under HP metamorphic conditions related to the continental deep subduction and collision, and the late-stage deformation under amphibolite to greenschist-facies conditions occurred in the post-eclogite exhumation processes. Two late-stages of widely developed, sequential ductile deformations D 3 and D 4, are recognized on the basis of penetrative fabrics and mineral aggregates in the Xiongdian-Suhe HP metamorphic unit, which shows clear, regionally, consistent overprinting relationships. D 3 fabrics are best preserved in the Suhe tract of low post-D 3 deformation intensity and characterized by steeply dipping layered mylonitic amphibolites associated with doubly vergent folds. They are attributed to a phase of tectonism linked to the initial exhumation of the HP rocks and involved crustal shortening with the development of upright structures and the widespread emplacement of garnet-bearing granites and felsic dikes. D 4 structures are attributed to the main episode of ductile extension (D 1 4) with a gently dipping foliation to the north and common intrafolial, recumbent folds in the Xiongdian tract, followed by normal sense top-to-the north ductile shearing (D 2 4) along an important tectonic boundary, the so-called Majiawa-Hexiwan fault (MHF), the westward continuation of the Balifan-Mozitan-Xiaotian fault (BMXF) of the northern Dabie Shan. It is indicated that the two stages of ductile deformation observed in the Xiongdian-Suhe HP metamorphic unit, reflecting the post-eclogite compressional or extrusion wedge formation, the subhorizontal ductile extension and crustal thinning as well as the top-to-the north shearing along the high-angle ductile shear zones responsible for exhumation of the HP unit as a coherent slab, are consistent with those recognized in the Dabie-Sulu UHP and HP metamorphic belts, suggesting that they were closely associated in time and space. The Xiongdian-Suhe HP metamorphic unit thus forms part of the Triassic (250-230 Ma) collision orogenic belt, and can not connect with the South Altun-North Qaidam-North Qinling UHP metamorphic belt formed during the Early Paleozoic (500-400 Ma).展开更多
Sea surface temperature data have shown that the area of highest temperatures of the North Pacific, always in the western tropics, increases in spring and summer by expanding northward. Thirty years of ship-injection ...Sea surface temperature data have shown that the area of highest temperatures of the North Pacific, always in the western tropics, increases in spring and summer by expanding northward. Thirty years of ship-injection temperatures are used here to document the year to year SST fluctuations for a given month and the month to month variations for a given year of the large surface area of the western tropics during the warming seasons. Some of the fluctuations are significantly large and may therefore be real. Thus the previously hypothesized exportation of warm surface water northward out of the western tropics at the end of every summer may deliver variable amounts of oceanic heat to mid- and higher latitudes from one year to another. A possible connection with mid-latitude weather changes on time scales of months to years is briefly stated.展开更多
In connection with the preparation of a chapter of the monograph “Trilobite record of China” on the Ordovician trilobites, a large number of Chinese species were critically reviewed. Among others, two of them previo...In connection with the preparation of a chapter of the monograph “Trilobite record of China” on the Ordovician trilobites, a large number of Chinese species were critically reviewed. Among others, two of them previously described from western marginal areas of the North China Platform respectively by Lu in Lu et al. (1976) as Bulbaspis ordosensis and by Zhou and Dean (1986) as Ischylophyma? zhiqiangi ought to be reassigned to new genera.展开更多
基金Supported by General Item of the Science and Research Plan of Yili Normal University (2011YNYB036)
文摘[Objective] The research aimed to analyze variation characteristics of the temperature and precipitation in north slope area of the Western Tianshan in recent 50 years.[Method] According to temperature and rainfall data from 1961 to 2010 at three meteorological stations in north slope area of the Western Tianshan,climate change in the zone in recent 50 years was analyzed by using linear trend analysis method and 5-year sliding average method.[Result] The temperature in north slope area of the Western Tianshan showed significant warming trend.The annual average temperature significantly increased at 0.3 ℃/10 a in recent 50 years.But rise rates of the temperature in different seasons were different:autumn> winter> spring> summer.The annual rainfall in north slope area of the Western Tianshan in recent 50 years overall presented relative increase trend.Seen from annual rainfall,it significantly increased at 16.9 mm/10 a.Seen from seasonal rainfall,except in autumn,rainfalls in other three seasons in the past 50 years all showed significant increase trends,with amplitude of 3.2-11.2 mm/10 a.The largest increase amplitude was in summer.After a small precipitation peak in the 1980s,autumn rainfall slightly declined in the past 20 years.[Conclusion] The climate in north slope area of the Western Tianshan become warm and wet.
文摘New structural and petrological data unveil a very complicated ductile deformation history of the Xiongdian-Suhe HP metamorphic unit, north-western Dabie Shan, central China. The fine-grained symplectic amphibolite-facies assemblage and coronal structure enveloping eclogite-facies garnet, omphacite and phengite etc., representing strain-free decompression and retrogressive metamorphism, are considered as the main criteria to distinguish between the early-stage deformation under HP metamorphic conditions related to the continental deep subduction and collision, and the late-stage deformation under amphibolite to greenschist-facies conditions occurred in the post-eclogite exhumation processes. Two late-stages of widely developed, sequential ductile deformations D 3 and D 4, are recognized on the basis of penetrative fabrics and mineral aggregates in the Xiongdian-Suhe HP metamorphic unit, which shows clear, regionally, consistent overprinting relationships. D 3 fabrics are best preserved in the Suhe tract of low post-D 3 deformation intensity and characterized by steeply dipping layered mylonitic amphibolites associated with doubly vergent folds. They are attributed to a phase of tectonism linked to the initial exhumation of the HP rocks and involved crustal shortening with the development of upright structures and the widespread emplacement of garnet-bearing granites and felsic dikes. D 4 structures are attributed to the main episode of ductile extension (D 1 4) with a gently dipping foliation to the north and common intrafolial, recumbent folds in the Xiongdian tract, followed by normal sense top-to-the north ductile shearing (D 2 4) along an important tectonic boundary, the so-called Majiawa-Hexiwan fault (MHF), the westward continuation of the Balifan-Mozitan-Xiaotian fault (BMXF) of the northern Dabie Shan. It is indicated that the two stages of ductile deformation observed in the Xiongdian-Suhe HP metamorphic unit, reflecting the post-eclogite compressional or extrusion wedge formation, the subhorizontal ductile extension and crustal thinning as well as the top-to-the north shearing along the high-angle ductile shear zones responsible for exhumation of the HP unit as a coherent slab, are consistent with those recognized in the Dabie-Sulu UHP and HP metamorphic belts, suggesting that they were closely associated in time and space. The Xiongdian-Suhe HP metamorphic unit thus forms part of the Triassic (250-230 Ma) collision orogenic belt, and can not connect with the South Altun-North Qaidam-North Qinling UHP metamorphic belt formed during the Early Paleozoic (500-400 Ma).
文摘Sea surface temperature data have shown that the area of highest temperatures of the North Pacific, always in the western tropics, increases in spring and summer by expanding northward. Thirty years of ship-injection temperatures are used here to document the year to year SST fluctuations for a given month and the month to month variations for a given year of the large surface area of the western tropics during the warming seasons. Some of the fluctuations are significantly large and may therefore be real. Thus the previously hypothesized exportation of warm surface water northward out of the western tropics at the end of every summer may deliver variable amounts of oceanic heat to mid- and higher latitudes from one year to another. A possible connection with mid-latitude weather changes on time scales of months to years is briefly stated.
文摘In connection with the preparation of a chapter of the monograph “Trilobite record of China” on the Ordovician trilobites, a large number of Chinese species were critically reviewed. Among others, two of them previously described from western marginal areas of the North China Platform respectively by Lu in Lu et al. (1976) as Bulbaspis ordosensis and by Zhou and Dean (1986) as Ischylophyma? zhiqiangi ought to be reassigned to new genera.