The Northeastern China cold vortex(NCCV)is one type of strong cyclonic vortex that occurs near Northeastern China(NEC),and NCCV activities are typically accompanied by a series of hazardous weather.This paper employed...The Northeastern China cold vortex(NCCV)is one type of strong cyclonic vortex that occurs near Northeastern China(NEC),and NCCV activities are typically accompanied by a series of hazardous weather.This paper employed an automatic algorithm to identify the NCCVs from 1979 to 2018 and analyzed their circulation patterns and climatic impacts by using the defined NCCV intensity index(NCCVI).The analysis revealed that the NCCV activities in summer exhibited a strong inter-annual variability,with an obvious periodicity of 3-4 years and 6-7 years,but without significant trends.In years when the NCCVI was high,NEC experienced negative geopotential height anomalies,cyclonic circulation,and cooler temperature anomalies,which were conducive to the maintenance and development of NCCV activities.Furthermore,large amounts of water vapor converged in NEC through two transportation routes as the NCCVs intensified,leading to a significant positive(negative)correlation with the summer precipitation(surface temperature)in NEC.The Atlantic sea surface temperature(SST)anomalies were closely related to summer NCCV activities.As the Atlantic SST rose,large amounts of surface sensible and latent heat flux were transported into the lower troposphere,inducing a positive geopotential height anomaly that occurred on the east side of the heat source.As a result,an eastward diverging flow was formed in the upper troposphere and propagated downstream,i.e.,the eastward propagating Rossby wave train,which eventually led to a coupled circulation in the Ural Mountains and NEC,as well as more intensive NCCV activities in summer.展开更多
The northeastern China cold vortex(NCCV)plays an important role in regional rainstorms over East Asia.Using the National Centers for Environmental Prediction Final reanalysis dataset and the Global Precipitation Measu...The northeastern China cold vortex(NCCV)plays an important role in regional rainstorms over East Asia.Using the National Centers for Environmental Prediction Final reanalysis dataset and the Global Precipitation Measurement product,an objective algorithm for identifying heavy-precipitation NCCV(HPCV)events was designed,and the climatological features of 164 HPCV events from 2001 to 2019 were investigated.The number of HPCV events showed an upward linear trend,with the highest frequency of occurrence in summer.The most active region of HPCV samples was the Northeast China Plain between 40°–55°N.Most HPCV events lasted 3–5 days and had radii ranging from 250 to 1000 km.The duration of HPCV events with larger sizes was longer.About half of the HPCV events moved into(moved out of)the definition region(35°–60°N,115°–145°E),and half initiated(dissipated)within the region.The initial position was close to the western boundary of the definition region,and the final position was mainly near the eastern boundary.The locations associated with the precipitation were mostly concentrated within 2000 km southeast of the HPCV systems,and they were farther from the center in the cold season than in the warm season.展开更多
In this study,regional rainstorm events (RREs) in northeastern China associated with the activity of the Northeastern China Cold Vortex (NCCV) were investigated on a medium-range time scale.The RREs occurring in north...In this study,regional rainstorm events (RREs) in northeastern China associated with the activity of the Northeastern China Cold Vortex (NCCV) were investigated on a medium-range time scale.The RREs occurring in northeastern China could be categorized into three groups according to the distribution of heavy rainfall.The largest cluster is characterized by the rainstorm events that occur on the northwestern side of the Changbai Mountains along a southwest-northeast axis.These events occur most frequently during the post-meiyu period.The authors place particular emphasis on the RREs that belong to the largest cluster and are closely associated with the activity of the NCCV.These RREs were preconditioned by the transportation of substantial amounts of water vapor to which the anomalous western Pacific subtropical high (WPSH) contributed.The attendant anomalous WPSH was primarily driven by the anomalous transient eddy feedback forcing the nearby East Asian jet.The development of the NCCV circulation was concurrent with the RREs and acted as their primary causative factor.A perspective based on low-frequency dynamics indicates that Rossby wave packets emanated from the blocking-type circulation over northeastern Asia led to the development of the NCCV activity.展开更多
基金National Natural Science Foundation of China(41975073,42274215)Wuxi University Research Start-up Fund for Introduced Talents (2023r037)+1 种基金Qinglan Project of Jiangsu Province for DING Liu-guan"333"Project of Jiangsu Province for DING Liu-guan
文摘The Northeastern China cold vortex(NCCV)is one type of strong cyclonic vortex that occurs near Northeastern China(NEC),and NCCV activities are typically accompanied by a series of hazardous weather.This paper employed an automatic algorithm to identify the NCCVs from 1979 to 2018 and analyzed their circulation patterns and climatic impacts by using the defined NCCV intensity index(NCCVI).The analysis revealed that the NCCV activities in summer exhibited a strong inter-annual variability,with an obvious periodicity of 3-4 years and 6-7 years,but without significant trends.In years when the NCCVI was high,NEC experienced negative geopotential height anomalies,cyclonic circulation,and cooler temperature anomalies,which were conducive to the maintenance and development of NCCV activities.Furthermore,large amounts of water vapor converged in NEC through two transportation routes as the NCCVs intensified,leading to a significant positive(negative)correlation with the summer precipitation(surface temperature)in NEC.The Atlantic sea surface temperature(SST)anomalies were closely related to summer NCCV activities.As the Atlantic SST rose,large amounts of surface sensible and latent heat flux were transported into the lower troposphere,inducing a positive geopotential height anomaly that occurred on the east side of the heat source.As a result,an eastward diverging flow was formed in the upper troposphere and propagated downstream,i.e.,the eastward propagating Rossby wave train,which eventually led to a coupled circulation in the Ural Mountains and NEC,as well as more intensive NCCV activities in summer.
基金supported by the National Key R&D Program of China under Grant No.2018YFC1507302the National Natural Science Foundation of China under Grant No.42175006+1 种基金Jiangsu Youth Talent Promotion Project(2021-084)the Basic Research Fund of CAMS under Grant No.2020R002.
文摘The northeastern China cold vortex(NCCV)plays an important role in regional rainstorms over East Asia.Using the National Centers for Environmental Prediction Final reanalysis dataset and the Global Precipitation Measurement product,an objective algorithm for identifying heavy-precipitation NCCV(HPCV)events was designed,and the climatological features of 164 HPCV events from 2001 to 2019 were investigated.The number of HPCV events showed an upward linear trend,with the highest frequency of occurrence in summer.The most active region of HPCV samples was the Northeast China Plain between 40°–55°N.Most HPCV events lasted 3–5 days and had radii ranging from 250 to 1000 km.The duration of HPCV events with larger sizes was longer.About half of the HPCV events moved into(moved out of)the definition region(35°–60°N,115°–145°E),and half initiated(dissipated)within the region.The initial position was close to the western boundary of the definition region,and the final position was mainly near the eastern boundary.The locations associated with the precipitation were mostly concentrated within 2000 km southeast of the HPCV systems,and they were farther from the center in the cold season than in the warm season.
基金jointly supported by the National Natural Science Foundation of China(Grant No.40975033)the National Key Technologies R&D Program of China(Grant No.2009BAC51B02)
文摘In this study,regional rainstorm events (RREs) in northeastern China associated with the activity of the Northeastern China Cold Vortex (NCCV) were investigated on a medium-range time scale.The RREs occurring in northeastern China could be categorized into three groups according to the distribution of heavy rainfall.The largest cluster is characterized by the rainstorm events that occur on the northwestern side of the Changbai Mountains along a southwest-northeast axis.These events occur most frequently during the post-meiyu period.The authors place particular emphasis on the RREs that belong to the largest cluster and are closely associated with the activity of the NCCV.These RREs were preconditioned by the transportation of substantial amounts of water vapor to which the anomalous western Pacific subtropical high (WPSH) contributed.The attendant anomalous WPSH was primarily driven by the anomalous transient eddy feedback forcing the nearby East Asian jet.The development of the NCCV circulation was concurrent with the RREs and acted as their primary causative factor.A perspective based on low-frequency dynamics indicates that Rossby wave packets emanated from the blocking-type circulation over northeastern Asia led to the development of the NCCV activity.