High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a b...High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a basis for scientific assessment of the evolutionary trend of coral reefs in the SCS.Although sporadic studies have been performed around Hainan Island in the northern SCS,the reconstructed sea level presents different values or is controversial because the indicative meaning of the sea-level indicators were neither quantified nor uniform criteria.Here,we determined the quantitative relationship between modern living coral and sea level by measuring the top surfaces of 27 live Porites corals from the inner reef flat along the east coast of Hainan Island and assessed the accuracy of results obtained using coral as sea-level indicators.Additionally,three in situ fossil Porites corals were analyzed based on elevation measurements,digital X-ray radiography,and U-Th dating.The survey results showed that the indicative meanings for the modern live Porites corals is(146.09±8.35)cm below the mean tide level(MTL).It suggested that their upward growth limit is constrained by the sea level,and the lowest low water is the highest level of survival for the modern live Porites corals.Based on the newly defined indicative meanings,6 new sea-level index points(SLIPs)were obtained and 19 published SLIPs were recalculated.Those SLIPs indicated a relative sea level fluctuation between(227.7±9.8)cm to(154.88±9.8)cm MTL between(5393±25)cal a BP and(3390±12)cal a BP,providing evidences of the Mid-Holocene sea-level highstand in the northern SCS.Besides that,our analysis demonstrated that different sea-level histories may be produced based on different indicative meanings or criteria.The dataset of 276 coral U-Th ages indicates that coral reef development in the northern SCS comprised the initial development,boom growth,decline,and flourishing development again.A comparison with regional records indicated that synergistic effects of climatic and environmental factors were involved in the development of coral reefs in the northern SCS.Thus,the cessation of coral reef development during the Holocene in the northern SCS was probably associated with the dry and cold climate in South China,as reflected in the synchronous weakening of the ENSO and East Asian summer monsoon induced by the reduction of the 65°N summer insolation,which forced the migration of the Intertropical Convergence Zone.展开更多
Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift ...Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling.A total of 289 post-rift normal faults were identified in the study area and can be classified into four types:(1)isolated normal faults above the carbonate platform;(2)isolated normal faults cutting through the carbonate platform;(3)conjugate normal faults,and(4)connecting normal faults.Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles.Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform.The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane.According to the symmetric elliptical distribution model of fault throw,an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between-1308 s and-1780 s(two-way travel time)in depth and may not penetrate the entire Liuhua carbonate platform.Moreover,it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area.We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event,rather than pore waters or hydrocarbons.展开更多
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not ...Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not fully understood.In this study,evolutions of sedimentary facies and palaeoenvironment and their influences on the development of source rocks in diverse tectonic regions of the Qiongdongnan Basin were investigated.The results show that during the Oligocene and to Miocene periods,the sedimentary environment of this basin progressively varied from a semi-closed gulf to an open marine environment,which resulted in significant differences in palaeoenvironmental conditions of the water column for various tectonic regions of the basin.In shallow-water areas,the palaeoproductivity and reducibility successively decrease,and the hydrodynamic intensity gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In deep-water areas,the water column of the Yacheng and Lingshui strata has a higher palaeoproductivity and a weaker hydrodynamic intensity than that of the Sanya-Meishan strata,while the reducibility gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In general,the palaeoenvironmental conditions of the water column are the most favorable to the development of the Yacheng organic-rich source rocks.Meanwhile,the Miocene marine source rocks in the deep-water areas of the Qiongdongnan Basin may also have a certain hydrocarbon potential.The differences in the development models of source rocks in various tectonic regions of continental margin basins should be fully evaluated in the exploration and development of hydrocarbons.展开更多
Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiong...Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiongdongnan Basin,northern South China Sea.However,the spatial distribution,controlling factors,and favorable areas are not well defined.Here we use the available high-resolution seismic lines,well logging,and heat flow data to explore the issues by calculating the thickness of gas hydrate stability zone(GHSZ)and estimating the inventory.Results show that the GHSZ thickness ranges between mostly~200 and 400 m at water depths>500 m.The gas hydrate inventory is~6.5×109-t carbon over an area of~6×104 km2.Three areas including the lower uplift to the south of the Lingshui sub-basin,the Songnan and Baodao sub-basins,and the Changchang sub-basin have a thick GHSZ of~250-310 m,250-330 m,and 350-400 m,respectively,where water depths are~1000-1600 m,1000-2000 m,and2400-3000 m,respectively.In these deep waters,bottom water temperatures vary slightly from~4 to 2℃.However,heat flow increases significantly with water depth and reaches the highest value of~80-100 mW/m2 in the deepest water area of Changchang sub-basin.High heat flow tends to reduce GHSZ thickness,but the thickest GHSZ still occurs in the Changchang sub-basin,highlighting the role of water depth in controlling GHSZ.The lower uplift to the south of the Lingshui sub-basin has high deposition rate(~270-830 m/Ma in 1.8-0 Ma);the thick Cenozoic sediment,rich biogenic and thermogenic gas supplies,and excellent transport systems(faults,diapirs,and gas chimneys)enables it a promising area of hydrate accumulation,from which hydrate-related bottom simulating reflectors,gas chimneys,and active cold seeps were widely revealed.展开更多
The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evoluti...The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.展开更多
The Zengmu and Beikang basins,separated by the West Baram Line(WBL)in the southwestern South China Sea margin,display distinct geological and geophysical features.However,the nature of the basins and the WBL are debat...The Zengmu and Beikang basins,separated by the West Baram Line(WBL)in the southwestern South China Sea margin,display distinct geological and geophysical features.However,the nature of the basins and the WBL are debated.Here we explore this issue by conducting the stratigraphic and structural interpretation,faults and subsidence analysis,and lithospheric finite extension modelling using seismic data.Results show that the WBL is a trans-extensional fault zone comprising normal faults and flower structures mainly active in the Late Eocene to Early Miocene.The Zengmu Basin,to the southwest of the WBL,shows an overall synformal geometry,thick folded strata in the Late Eocene to Late Miocene(40.4-5.2 Ma),and pretty small normal faults at the basin edge,which imply that the Zengmu Basin is a foreland basin under the Luconia and Borneo collision in the Sarawak since the Eocene.Furthermore,the basin exhibits two stages of subsidence(fast in 40.4-30 Ma and slow in 30-0 Ma);but the amount of observed subsidence and heat flow are both greater than that predicted by crustal thinning.The Beikang Basin,to the NE of the WBL,consists of the syn-rift faulted sub-basins(45-16.4 Ma)and the post-rift less deformed sequences(16.4-0 Ma).The heat flow(~60 mW/m2)is also consistent with that predicted based on crustal thinning,inferring that it is a rifted basin.However,the basin shows three stages of subsidence(fast in 45-30 Ma,uplift in 30-16.4 Ma,and fast in 16.4-0 Ma).In the uplift stage,the strata were partly folded in the Late Oligocene and partly eroded in the Early Miocene,which is probably caused by the flexural bulging in response to the paleo-South China Sea subduction and the subsequent Dangerous Grounds and Borneo collision in the Sabah to the east of the WBL.展开更多
Polygonal faults(PFs)generally have a classic polygonal geometry in map view.However,under the influence of tectonic faults,diapirs,channels,and slopes,the classic polygonal geometry of PFs is not preserved,demonstrat...Polygonal faults(PFs)generally have a classic polygonal geometry in map view.However,under the influence of tectonic faults,diapirs,channels,and slopes,the classic polygonal geometry of PFs is not preserved,demonstrating differences(different characters)in map-view 3D seismic data covering an area of 334km^(2) of the Changchang(CC)sag,are used to document the mapview and cross-sectional characteristics of PFs.These data also help investigate the irregularly polygonal geometries of PFs due to the presence of influence factors,such as transtensional faults,submarine fans,channels,diapirs/gas chimneys,and the basal slope within the lower-middle Miocene strata.Results show that various irregularly polygonal geometries of PFs can be classified into enechelon and arcuate PFs,channel-segmenting and-bounding PFs,radial PFs,and rectangular PFs in map-view.En-echelon and arcuate PFs are induced by transtensional faults and exhibit a unique‘flower’structure in NE-and SE-trending cross-sections in the NW area of the study area.This finding is documented for the first time.Channel-segmenting PFs occur in the(northwest)low-amplitude muddy channel and are inhibited in the(southeast)high-amplitude sandy channel in the SW area.Radial PFs are radially aligned around a gas chimney/diapir containing some high-amplitude anomalies(HAAs)in the middle area.The presence of intrusive sandstones with HAAs along the periphery of the diapirs restricts the occurrence of PFs.Two high-amplitude submarine fans act as a mechanical barrier to the propagation of PFs.Meanwhile,the(moderate)slope in the NE area induces rectangular PFs.Additionally,the geneses of the PFs in the current study are comprehensively discussed.This study adds to our understanding of the differences between PFs with irregularly polygonal geometries.展开更多
Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,San...Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,Sanshui Basin developed continuous stratigraphy from Lower Cretaceous to Eocene and provides precious outcrops to study the regional tectonic evolution during the Cretaceous.Therefore,we conducted field observations,petrology,clay mineralogy,geochemistry,and detrital zircon chronology analyses of sedimentary rocks from the Upper Cretaceous Sanshui Formation in Sanshui Basin.Results suggest that the Sanshui Basin is characterized as an intermoutane basin with multiple provenances,strong hydrodynamic environment,and proximal accumulation in the Late Cretaceous.An angular unconformity at the boundary between the Lower and Upper Cretaceous was observed in the basin.The sedimentary facies of the northern basin changed from lacustrine sedimentary environment in the Early Cretaceous to alluvial facies in the Late Cretaceous.The zircon U-Pb ages of granitic gravelly sandstone from Sanshui Formation prominently range from 100 Ma to 300 Ma,which is close to the deposition age of Sanshui Formation.The major and trace elements of the Late Cretaceous sedimentary samples show characteristics of active continental margin,and are different from the Paleogene rifting sequences.Hence,we propose that the northern South China Sea margin underwent an intense tectonic uplift at the turn of the Early and Late Cretaceous(around 100 Ma).Afterward,the northern South China Sea margin entered a wide extension stage in the Late Cretaceous(~100 to~80 Ma).This extensional phase is related to the back-arc extension in the active continental margin environment,which is different from the later passive rifting in the Cenozoic.The transition from active subduction to passive extension in the northern South China Sea may occur between the late Late Cretaceous and the Paleogene.展开更多
Before the implementation of offshore oil and gas exploitation,it is essential to understand the various factors that influence the stability of submarine sediments surrounding the project.Considering the factors such...Before the implementation of offshore oil and gas exploitation,it is essential to understand the various factors that influence the stability of submarine sediments surrounding the project.Considering the factors such as cost and operability,it is not feasible to assess the physical-mechanical properties of sediments covering the entire region by borehole sampling.In this study,the correlation between near seafloor seismic amplitude and the mean shear strength of shallow sediments was explored using seismic and core testing data from the northern continental slope area of the South China Sea.Results showed that the mean water content of sediments in the layer up to 12 m below the seafloor(mbsf)gradually increased with increasing water depth,and the mean shear strength tended to decrease rapidly near the 1000 m depth contour.The near seafloor seismic amplitude could reflect the mean shear strength of sediments in the 12 mbsf layer under seismic frequency of 65 Hz and wave velocity of 1600 m/s.When the mean shear strength was greater than 10 kPa or the water depth was less than 1000 m,there was a significant linear positive correlation between mean shear strength and near seafloor seismic amplitude.Otherwise,there was a significant linear negative correlation between mean shear strength and near seafloor seismic amplitude.On the basis of these correlations,the pattern of shear strength was estimated from near seafloor seismic amplitude and mapped.The mean shear strength of sediments above 12 mbsf gradually decreased with increasing water depth in the continental slope area,whereas little change occurred in the continental shelf and the end of the canyon.Within the canyon area,the mean shear strength of sediments was characterized by larger values in both sides of the canyon walls and smaller values in the canyon bottom,which was consistent with the infinite slope stability theory.The study provides a method for using near seafloor seismic amplitude data to guide sediment sampling design,and presents a continuous dataset of sediment strength for the simulation of regional sediment stability.展开更多
The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geody...The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geodynamics during the multi-plate convergence in the Cenozoic.Several Cenozoic basins formed in the northern margin of the SCS,which preserve the sedimentary tectonic records of the opening of the SCS.Due to the spatial non-uniformity among different basins,a systematic study on the various basins in the northern margin of the SCS constituting the Northern Cenozoic Basin Group(NCBG) is essential.Here we present results from a detailed evaluation of the spatial-temporal migration of the boundary faults and primary unconformities to unravel the mechanism of formation of the NCBG.The NCBG is composed of the Beibu Gulf Basin(BBGB),Qiongdongnan Basin(QDNB),Pearl River Mouth Basin(PRMB) and Taixinan Basin(TXNB).Based on seismic profiles and gravity-magnetic anomalies,we confirm that the NE-striking onshore boundary faults propagated into the northern margin of the SCS.Combining the fault slip rate,fault combination and a comparison of the unconformities in different basins,we identify NE-striking rift composed of two-stage rifting events in the NCBG:an early-stage rifting(from the Paleocene to the Early Oligocene) and a late-stage rifting(from the Late Eocene to the beginning of the Miocene).Spatially only the late-stage faults occurs in the western part of the NCBG(the BBGB,the QDNB and the western PRMB),but the early-stage rifting is distributed in the whole NCBG.Temporally,the early-stage rifting can be subdivided into three phases which show an eastward migration,resulting in the same trend of the primary unconformities and peak faulting within the NCBG.The late-stage rifting is subdivided into two phases,which took place simultaneously in different basins.The first and second phase of the early-stage rifting is related to back-arc extension of the Pacific subduction retreat system.The third phase of the earlystage rifting resulted from the joint effect of slab-pull force due to southward subduction of the proto-SCS and the back-arc extension of the Pacific subduction retreat system.In addition,the first phase of the late-stage faulting corresponds with the combined effect of the post-collision extension along the Red River Fault and slab-pull force of the proto-SCS subduction.The second phase of the late-stage faulting fits well with the sinistral faulting of the Red River Fault in response to the Indochina Block escape tectonics and the slab-pull force of the proto-SCS.展开更多
Tintinnids were enumerated and identified in samples collected from 36 stations between 18°-22°N, 107°-122 °E in the northern South China Sea (NSCS). 44 species belonging to 24 genera of tintinni...Tintinnids were enumerated and identified in samples collected from 36 stations between 18°-22°N, 107°-122 °E in the northern South China Sea (NSCS). 44 species belonging to 24 genera of tintinnids were recorded. The dominant species were He/icostome/la /onga and Tintinnopsis radix. Tintinnids abundance ranged from 0 to 2 200 cell/L, and mean abundance was 221cell/L in the surface water. Tintinnids abundance and species numbers decreased from coast to offshore. Upwelling and Pearl River discharge influenced the distribution of tintinnids by regulating nutrients supply. Maximum abundance (2 200 cell/L) was found in the surface water of A1. Tintinnids abundance showed positive relationship with chlorophyll a (Chl a) concentration, and no significant relationship was found between tintinnids abundance and temperature.展开更多
A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendic...A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendicular to the orientation of another well-known,large,and nearly coeval submarine channel in this area.Based on the interpretation of high-resolution 3D seismic data,this study describes and analyzes the stratigraphy,tectonics,sedimentation,morphology,structure and evolution of HGC by means of well-seismic synthetic calibration,one-and two-dimensional forward modeling,attribute interpretation,tectonic interpretation,and gas detection.The HGC is located on the downthrown side of an earlier activated normal fault and grew northwestward along the fault strike.The channel is part of a slope that extends from the western Huaguang Sag to the eastern Beijiao Uplift.The HGC underwent four developmental stages:the(1)incubation(late Sanya Formation,20.4–15.5 Ma),(2)embryonic(Meishan Formation,15.5–10.5 Ma),(3)peak(Huangliu Formation,10.5–5.5 Ma)and(4)decline(Yinggehai Formation,5.5–1.9 Ma)stages.The channel sandstones have a provenance from the southern Yongle Uplift and filled the channel via multistage vertical amalgamation and lateral migration.The channel extended 42.5 km in an approximately straight pattern in the peak stage.At 10.5 Ma,sea level fell relative to its lowest level,and three oblique progradation turbidite sand bodies filled the channel from south to north.A channel sandstone isopach map demonstrated a narrow distribution in the early stages and a fan-shaped distribution in the late stage.The formation and evolution of the HGC were controlled mainly by background tectonics,fault strike,relative sea level change,and mass supply from the Yongle Uplift.The HGC sandstone reservoir is near the Huaguangjiao Sag,where hydrocarbons were generated.Channel-bounding faults and underlying faults link the source rock with the reservoir.A regionally extensive mudstone caprock overlies the channel sandstone.Two traps likely containing gas were recognized in a structural high upstream of the channel from seismic attenuation anomalies.The HGC will likely become an important oil and gas accumulation setting in the QDNB deep-water area.展开更多
Notable differences in the structural characteristics and evolution of three adjacent sub-sags,i.e.,the Wenchang sub-sags A,B,and C,on the downthrown side of the Zhu IlI South Fault in the Wenchang Sag,are significant...Notable differences in the structural characteristics and evolution of three adjacent sub-sags,i.e.,the Wenchang sub-sags A,B,and C,on the downthrown side of the Zhu IlI South Fault in the Wenchang Sag,are significant as they affect the formation and distribution of the oil and gas in these three sub-sags.However,the differences in their tectonic evolutions and formation mechanisms have not yet been adequately explained.In this paper,stress analysis,equilibrium profiles,and paleogeomorphic restora-tion,are used to investigate the dynamic settings,formation mechanisms,and influencing factors of the structural deformation related to the formation of the Wenchang Sag based on interpretation of seismic data.The results of the stress analysis suggest clockwise deflection of the regional tensile stress direction from a WNW-ESE trend during the Early Paleocene to NW-SE and NNW-SSE trends during the Eocene,to a nearly N-S trend during the Oligocene,and finally to a NNE-SSW trend during the Miocene.This clockwise rotation of the regional tensile stress direction led to the formation of a dextral strike-slip stress component parallel to the NE-trending Zhu I South Fault.This strike-slip stress component formed a releasing bend in sub-sag A,and may be associated with the continuous subsidence of a thick sedimentary layer in sub-sag A.It also created a restraining bend in sub-sag B,which underwent multiple structural inversions during its extension and subsidence and has a relatively s mall sedimentary thick-ness.The double restraining bend in sub-sag C is considered to have been strongly uplifted and eroded in response to this strike-slip stress component.Four obvious structural inversions in sub-sag B are iden-tified in this paper.These structural inversions correspond to the last four regional tectonic movements.This interpretation suggests that the formation of the structural inversions was likely related to the strong tensile stress and the small intersection angle between the direction of the regional tensile stress and the pre-existing boundary fault.The rotation of the tensile stress direction was responsible for the strike-slip movement on the pre-existing boundary fault and the formation of the releasing bend and restraining bend,which controlled the structural evolutions of the sub-sags.This reasonably explains the differential tectonic evolution of these three sub-sags in the Wenchang Sag,and provides a crucial idea forstructuralanalysisof similarbasins.展开更多
As one of the biggest marginal seas in the western Pacific margin, the South China Sea (SCS) experienced continental rifting and seafloor spreading during the Cenozoic. The northern continental margin of the SCS is ...As one of the biggest marginal seas in the western Pacific margin, the South China Sea (SCS) experienced continental rifting and seafloor spreading during the Cenozoic. The northern continental margin of the SCS is classified as a passive continental margin. However, its depositional and structural evolution remains controversial, especially in the deep slope area. The lack of data hindered the correlation between continental shelf and oceanic basin, and prevented the establishment of sequence stratigraphic frame of the whole margin. The slope basins in the mid-northern margin of SCS developed in the Cenozoic; the sediments and basin infill recorded the geological history of the continental margin and the SCS spreading. Using multi-channel seismic dataset acquired in three survey cruises during 1987 to 2004, combined with the data of ODP Leg 184 core and industrial wells, we carried out the sequence stratigraphic division and correlation of the Cenozoic in the middle-northern margin of SCS with seismic profiles and sedimentary facies. We interpreted the seismic reflection properties including continuity, amplitude, fi'equency, reflection terminals, and 15 sequence boundaries of the Cenozoic in the study area, and correlated the well data in geological age. The depositional environment changed from river and lake, shallow bay to open-deep sea, in correspondence to tectonic events of syn-rifting, early drifting, and late drifting stages of basin evolution.展开更多
The northern South China Sea(NSCS)is significantly influenced by the Kuroshio intrusion and the coastal currents.Our knowledge on the roles of both currents on phytoplankton spatial variations is still inadequate.Here...The northern South China Sea(NSCS)is significantly influenced by the Kuroshio intrusion and the coastal currents.Our knowledge on the roles of both currents on phytoplankton spatial variations is still inadequate.Here,we investigated the concentrations of phytoplankton biomarkers and their proportions in surface suspended particles from 47 sites of the NSCS during summer of 2017 and 2019.Brassicasterol/epi-brassicasterol,dinosterol,and C37 alkenones were used as proxies of biomass for diatoms,dinoflagellates,and haptophytes,respectively,and their sum indicating total phytoplankton biomass.A three end-member mixing model was applied to quantitatively assess the influence extent of the Kuroshio intrusion and the coastal currents.Our results showed that the Kuroshio intrusion and the coastal currents contributed equally to the overall surface water masses in the study area;however,the two currents had distinct effects on the spatial distribution of phytoplankton.For phytoplankton biomass,the eutrophic coastal currents were likely to be the main controlling factors,while the impact of the Kuroshio intrusion was weak and stimulated significant increases in phytoplankton biomass only at certain boundary sites.For phytoplankton community structures,the Kuroshio and its intrusion were the main factors,resulting in an increase in the proportions of dinoflagellates and haptophytes.The proportion of diatoms slightly increased due to the influence of the coastal currents.Our study quantifies the effects of the Kuroshio and the coastal currents on phytoplankton in the NSCS in terms of hydrological parameters,providing an important basis for the understanding of ecological functions and biogeochemical cycles in marginal sea-open ocean boundary regions.展开更多
Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South C...Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South China Sea,this study analyzed the structural units,tectonic feature and geodynamics of the sedimentary basin.The new data suggests that the Nan0 an Basin is a rift basin oriented in the NE-SW direction,rather than a pull-apart basin induced by strike-slip faults along the western margin.The basin is a continuation of the rifts in the southwest South China Sea since the late Cretaceous.It continued rifting until the middle Miocene,even though oceanic crust occurred in the Southwest Subbasin.However,it had no transfer surface at the end of spreading,where it was characterized by a late middle Miocene unconformity(reflector T3).The Nan'an Basin can be divided into eight structural units by a series of NE-striking faults.This study provides evidences to confirm the relative importance and interplay between regional strike-slips and orthogonal displacement during basin development and deformation.The NE-SW-striking dominant rift basin indicates that the geodynamic drivers of tectonic evolution in the western margin of the South China Sea did not have a large strike-slip mechanism.Therefore,we conclude that a large strike-slip fault system did not exist in the western margin of the South China Sea.展开更多
Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in t...Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in the continental slope area of the western South China Sea. Based on the interpretation and analysis of multi-beam bathymetry and two-dimensional multi-channel seismic data, the geology of the canyons has however not been studied yet. In this paper, the morphology and distribution characteristics of the canyon are carefully described,the sedimentary filling structure and its evolution process of the canyon are analyzed, and then its controlling factors are discussed. The results show that Rizhao Canyons group is a large slope restricted canyon group composed of one east-west west main and nine branch canyons extending to the south. The canyon was formed from the late Miocene to the Quaternary. The east-west main canyon is located in the transition zone between the northern terrace and the southern Zhongjiannan Slope, and it is mainly formed by the scouring and erosion of the material source from the west, approximately along the slope direction. Its development and evolution is mainly controlled by sediment supply and topographic conditions, the development of 9 branch canyons is mainly controlled by gravity flow and collapse from the east-west main canyon. This understanding result is a supplement to the study of “source-channel–sink” sedimentary system in the west of the South China Sea, and has important guiding significance for the study of marine geological hazards.展开更多
The Zengmu Basin located in the shallow water area of the southern South China Sea,is rich in oil and gas resources,within which faults and mud-diapir are developed,but it is unknown whether oil and gas migrate to the...The Zengmu Basin located in the shallow water area of the southern South China Sea,is rich in oil and gas resources,within which faults and mud-diapir are developed,but it is unknown whether oil and gas migrate to the seafloor surface.The newly collected multibeam data across the Zengmu Basin reveal a large number of depressions,with depths of 2-4 m,widths of several tens of meters,large distribution range of 1.8-8 km along survey line,up to~50 km,and their backscatter intensity(-26 dB)is much greater than that of the surrounding area(-38 dB).Combined with the developed mud-diapir and fracture structures,and abundant oil and gas resources within this basin,these depressions are presumed to be pockmarks.Furthermore,more than 110 mono-sized small circular pockmarks,with a depth of less than 1 m and a width of 5 m,are observed in an area of less than 0.03 km2,which are not obliterated by sediment infilling with high sedimentation rate,implying an existence of unit-pockmarks that are or recently were active.In addition,seismic profiles across the Zengmu Basin show characterization of upward migration of hydrocarbons,expressed as mud-diapir structures,bright spots in the shallow formation with characteristics of“low frequency increase and high frequency attenuation”.The subbottom profiles show the mud-diapir structures,as well as the gas-bearing blank zones beneath the seafloor.These features suggest large gas leaking and occurrence of large amounts of carbonate nodules on the seafloor.This indicates the complex and variable substrate type in the Zengmu Basin,while the area was once thought to be mainly silty sand and find sand.This is the first report on the discovery of pockmarks in the Zengmu Basin;it will provide basic information for submarine stability and marine engineering in China’s maritime boundaries.展开更多
Wind gusts are common environmental hazards that can damage buildings,bridges,aircraft,and cruise ships and interrupt electric power distribution,air traffic,waterway transport and port operations.Accurately predictin...Wind gusts are common environmental hazards that can damage buildings,bridges,aircraft,and cruise ships and interrupt electric power distribution,air traffic,waterway transport and port operations.Accurately predicting peak wind gusts in numerical models is essential for saving lives and preventing economic losses.This study investigates the climatology of peak wind gusts and their associated gust factors(GFs)using observations in the coastal and open ocean of the northern South China Sea(NSCS),where severe gust-producing weather occurs throughout the year.The stratified climatology demonstrates that the peak wind gust and GF vary with seasons and particularly with weather types.Based on the inversely proportional relationship between the GF and mean wind speed(MWS),a variety of GF models are constructed through least squares regression analysis.Peak gust speed(PGS)forecasts are obtained through the GF models by multiplying the GFs by observed wind speeds rather than forecasted wind speeds.The errors are thus entirely due to the representation of the GF models.The GF models are improved with weather-adaptive GFs,as evaluated by the stratified MWS.Nevertheless,these weather-adaptive GF models show negative bias for predicting stronger PGSs due to insufficient data representation of the extreme wind gusts.The evaluation of the above models provides insight into maximizing the performance of GF models.This study further proposes a stratified process for forecasting peak wind gusts for routine operations.展开更多
基金The National Natural Science Foundation of China under contract Nos 42366002 and 41702182the National Key R&D Program of China under contract No.2017YFA0603300the Guangxi Scientific Projects under contract No.2018GXNSFAA281293。
文摘High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a basis for scientific assessment of the evolutionary trend of coral reefs in the SCS.Although sporadic studies have been performed around Hainan Island in the northern SCS,the reconstructed sea level presents different values or is controversial because the indicative meaning of the sea-level indicators were neither quantified nor uniform criteria.Here,we determined the quantitative relationship between modern living coral and sea level by measuring the top surfaces of 27 live Porites corals from the inner reef flat along the east coast of Hainan Island and assessed the accuracy of results obtained using coral as sea-level indicators.Additionally,three in situ fossil Porites corals were analyzed based on elevation measurements,digital X-ray radiography,and U-Th dating.The survey results showed that the indicative meanings for the modern live Porites corals is(146.09±8.35)cm below the mean tide level(MTL).It suggested that their upward growth limit is constrained by the sea level,and the lowest low water is the highest level of survival for the modern live Porites corals.Based on the newly defined indicative meanings,6 new sea-level index points(SLIPs)were obtained and 19 published SLIPs were recalculated.Those SLIPs indicated a relative sea level fluctuation between(227.7±9.8)cm to(154.88±9.8)cm MTL between(5393±25)cal a BP and(3390±12)cal a BP,providing evidences of the Mid-Holocene sea-level highstand in the northern SCS.Besides that,our analysis demonstrated that different sea-level histories may be produced based on different indicative meanings or criteria.The dataset of 276 coral U-Th ages indicates that coral reef development in the northern SCS comprised the initial development,boom growth,decline,and flourishing development again.A comparison with regional records indicated that synergistic effects of climatic and environmental factors were involved in the development of coral reefs in the northern SCS.Thus,the cessation of coral reef development during the Holocene in the northern SCS was probably associated with the dry and cold climate in South China,as reflected in the synchronous weakening of the ENSO and East Asian summer monsoon induced by the reduction of the 65°N summer insolation,which forced the migration of the Intertropical Convergence Zone.
基金The National Natural Science Foundation of China under contract No.42276066the Key Research and Development Program(International Science and Technology Cooperation Development Program)of Hainan Province under contract No.GHYF2022009the Youth Innovation Promotion Association of CAS under contract No.2018401.
文摘Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling.A total of 289 post-rift normal faults were identified in the study area and can be classified into four types:(1)isolated normal faults above the carbonate platform;(2)isolated normal faults cutting through the carbonate platform;(3)conjugate normal faults,and(4)connecting normal faults.Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles.Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform.The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane.According to the symmetric elliptical distribution model of fault throw,an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between-1308 s and-1780 s(two-way travel time)in depth and may not penetrate the entire Liuhua carbonate platform.Moreover,it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area.We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event,rather than pore waters or hydrocarbons.
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
基金supported by the National Natural Science Foundation of China(42272162)the Natural Science Foundation of Guangdong Province(2021A1515011381 and 2021A1515011635)the Science Project of the CNOOC(KJZH-2021-0003-00).
文摘Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not fully understood.In this study,evolutions of sedimentary facies and palaeoenvironment and their influences on the development of source rocks in diverse tectonic regions of the Qiongdongnan Basin were investigated.The results show that during the Oligocene and to Miocene periods,the sedimentary environment of this basin progressively varied from a semi-closed gulf to an open marine environment,which resulted in significant differences in palaeoenvironmental conditions of the water column for various tectonic regions of the basin.In shallow-water areas,the palaeoproductivity and reducibility successively decrease,and the hydrodynamic intensity gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In deep-water areas,the water column of the Yacheng and Lingshui strata has a higher palaeoproductivity and a weaker hydrodynamic intensity than that of the Sanya-Meishan strata,while the reducibility gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In general,the palaeoenvironmental conditions of the water column are the most favorable to the development of the Yacheng organic-rich source rocks.Meanwhile,the Miocene marine source rocks in the deep-water areas of the Qiongdongnan Basin may also have a certain hydrocarbon potential.The differences in the development models of source rocks in various tectonic regions of continental margin basins should be fully evaluated in the exploration and development of hydrocarbons.
基金Supported by the K.C.Wong Education Foundation(No.GJTD-2018-13)the Youth Innovation Promotion Association of Chinese Academy of Sciences+7 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(Nos.GML2019ZD0104,GML2019ZD0205)the Guangzhou Municipal Science and Technology Program(No.201904010285)the National Natural Science Foundation of China(No.42076077)the Innovation Academy of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences(No.ISEE2018PY02)the National Key Research and Development Program of China(No.2021YFC3100604)the Hainan Key Laboratory of Marine Geological Resources and Environment(No.HNHYDZZYHJKF003)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515011298)the Guangdong Special Support Talent Team Program(No.2019BT02H594)。
文摘Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiongdongnan Basin,northern South China Sea.However,the spatial distribution,controlling factors,and favorable areas are not well defined.Here we use the available high-resolution seismic lines,well logging,and heat flow data to explore the issues by calculating the thickness of gas hydrate stability zone(GHSZ)and estimating the inventory.Results show that the GHSZ thickness ranges between mostly~200 and 400 m at water depths>500 m.The gas hydrate inventory is~6.5×109-t carbon over an area of~6×104 km2.Three areas including the lower uplift to the south of the Lingshui sub-basin,the Songnan and Baodao sub-basins,and the Changchang sub-basin have a thick GHSZ of~250-310 m,250-330 m,and 350-400 m,respectively,where water depths are~1000-1600 m,1000-2000 m,and2400-3000 m,respectively.In these deep waters,bottom water temperatures vary slightly from~4 to 2℃.However,heat flow increases significantly with water depth and reaches the highest value of~80-100 mW/m2 in the deepest water area of Changchang sub-basin.High heat flow tends to reduce GHSZ thickness,but the thickest GHSZ still occurs in the Changchang sub-basin,highlighting the role of water depth in controlling GHSZ.The lower uplift to the south of the Lingshui sub-basin has high deposition rate(~270-830 m/Ma in 1.8-0 Ma);the thick Cenozoic sediment,rich biogenic and thermogenic gas supplies,and excellent transport systems(faults,diapirs,and gas chimneys)enables it a promising area of hydrate accumulation,from which hydrate-related bottom simulating reflectors,gas chimneys,and active cold seeps were widely revealed.
基金This study is financially supported by the National Natural Science Foundation of China(42072181).
文摘The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.
基金Supported by the Youth Innovation Promotion Association CASthe National Key Research and Development Program of China(No.2021YFC3100604)+5 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0205)the Guangzhou Municipal Science and Technology Program(No.201904010285)the K.C.Wong Education Foundation(No.GJTD-2018-13)the Hainan Key Laboratory of Marine Geological Resources and Environment(No.HNHYDZZYHJKF003)the China Geological Survey(No.DD20190378)the National Natural Science Foundation of China(No.42076077)。
文摘The Zengmu and Beikang basins,separated by the West Baram Line(WBL)in the southwestern South China Sea margin,display distinct geological and geophysical features.However,the nature of the basins and the WBL are debated.Here we explore this issue by conducting the stratigraphic and structural interpretation,faults and subsidence analysis,and lithospheric finite extension modelling using seismic data.Results show that the WBL is a trans-extensional fault zone comprising normal faults and flower structures mainly active in the Late Eocene to Early Miocene.The Zengmu Basin,to the southwest of the WBL,shows an overall synformal geometry,thick folded strata in the Late Eocene to Late Miocene(40.4-5.2 Ma),and pretty small normal faults at the basin edge,which imply that the Zengmu Basin is a foreland basin under the Luconia and Borneo collision in the Sarawak since the Eocene.Furthermore,the basin exhibits two stages of subsidence(fast in 40.4-30 Ma and slow in 30-0 Ma);but the amount of observed subsidence and heat flow are both greater than that predicted by crustal thinning.The Beikang Basin,to the NE of the WBL,consists of the syn-rift faulted sub-basins(45-16.4 Ma)and the post-rift less deformed sequences(16.4-0 Ma).The heat flow(~60 mW/m2)is also consistent with that predicted based on crustal thinning,inferring that it is a rifted basin.However,the basin shows three stages of subsidence(fast in 45-30 Ma,uplift in 30-16.4 Ma,and fast in 16.4-0 Ma).In the uplift stage,the strata were partly folded in the Late Oligocene and partly eroded in the Early Miocene,which is probably caused by the flexural bulging in response to the paleo-South China Sea subduction and the subsequent Dangerous Grounds and Borneo collision in the Sabah to the east of the WBL.
基金supported by the Key Laboratory of Marine Mineral Resources,Ministry of Land and Resources of China(No.KLMMR-2018-B-07)the National Basic Research Program of China(No.2011ZX05025-006-02)the National Natural Science Foundation of China(No.41672206)。
文摘Polygonal faults(PFs)generally have a classic polygonal geometry in map view.However,under the influence of tectonic faults,diapirs,channels,and slopes,the classic polygonal geometry of PFs is not preserved,demonstrating differences(different characters)in map-view 3D seismic data covering an area of 334km^(2) of the Changchang(CC)sag,are used to document the mapview and cross-sectional characteristics of PFs.These data also help investigate the irregularly polygonal geometries of PFs due to the presence of influence factors,such as transtensional faults,submarine fans,channels,diapirs/gas chimneys,and the basal slope within the lower-middle Miocene strata.Results show that various irregularly polygonal geometries of PFs can be classified into enechelon and arcuate PFs,channel-segmenting and-bounding PFs,radial PFs,and rectangular PFs in map-view.En-echelon and arcuate PFs are induced by transtensional faults and exhibit a unique‘flower’structure in NE-and SE-trending cross-sections in the NW area of the study area.This finding is documented for the first time.Channel-segmenting PFs occur in the(northwest)low-amplitude muddy channel and are inhibited in the(southeast)high-amplitude sandy channel in the SW area.Radial PFs are radially aligned around a gas chimney/diapir containing some high-amplitude anomalies(HAAs)in the middle area.The presence of intrusive sandstones with HAAs along the periphery of the diapirs restricts the occurrence of PFs.Two high-amplitude submarine fans act as a mechanical barrier to the propagation of PFs.Meanwhile,the(moderate)slope in the NE area induces rectangular PFs.Additionally,the geneses of the PFs in the current study are comprehensively discussed.This study adds to our understanding of the differences between PFs with irregularly polygonal geometries.
基金Supported by the Guangdong Special Support Talent Team Program(No.2019BT02H594)the National Natural Science Foundation of China(Nos.41502100,U2244221)。
文摘Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,Sanshui Basin developed continuous stratigraphy from Lower Cretaceous to Eocene and provides precious outcrops to study the regional tectonic evolution during the Cretaceous.Therefore,we conducted field observations,petrology,clay mineralogy,geochemistry,and detrital zircon chronology analyses of sedimentary rocks from the Upper Cretaceous Sanshui Formation in Sanshui Basin.Results suggest that the Sanshui Basin is characterized as an intermoutane basin with multiple provenances,strong hydrodynamic environment,and proximal accumulation in the Late Cretaceous.An angular unconformity at the boundary between the Lower and Upper Cretaceous was observed in the basin.The sedimentary facies of the northern basin changed from lacustrine sedimentary environment in the Early Cretaceous to alluvial facies in the Late Cretaceous.The zircon U-Pb ages of granitic gravelly sandstone from Sanshui Formation prominently range from 100 Ma to 300 Ma,which is close to the deposition age of Sanshui Formation.The major and trace elements of the Late Cretaceous sedimentary samples show characteristics of active continental margin,and are different from the Paleogene rifting sequences.Hence,we propose that the northern South China Sea margin underwent an intense tectonic uplift at the turn of the Early and Late Cretaceous(around 100 Ma).Afterward,the northern South China Sea margin entered a wide extension stage in the Late Cretaceous(~100 to~80 Ma).This extensional phase is related to the back-arc extension in the active continental margin environment,which is different from the later passive rifting in the Cenozoic.The transition from active subduction to passive extension in the northern South China Sea may occur between the late Late Cretaceous and the Paleogene.
基金The National Natural Science Foundation of China under contract No.41706065the Basic Scientific Fund for National Public Research Institutes of China under contract No.2015G08+1 种基金the NSFC-Shandong Joint Fund for Marine Science Research Centers of China under contract No.U1606401the National Program on Global Change and Air-sea Interaction of China under contract No.GASI-GEOGE-05.
文摘Before the implementation of offshore oil and gas exploitation,it is essential to understand the various factors that influence the stability of submarine sediments surrounding the project.Considering the factors such as cost and operability,it is not feasible to assess the physical-mechanical properties of sediments covering the entire region by borehole sampling.In this study,the correlation between near seafloor seismic amplitude and the mean shear strength of shallow sediments was explored using seismic and core testing data from the northern continental slope area of the South China Sea.Results showed that the mean water content of sediments in the layer up to 12 m below the seafloor(mbsf)gradually increased with increasing water depth,and the mean shear strength tended to decrease rapidly near the 1000 m depth contour.The near seafloor seismic amplitude could reflect the mean shear strength of sediments in the 12 mbsf layer under seismic frequency of 65 Hz and wave velocity of 1600 m/s.When the mean shear strength was greater than 10 kPa or the water depth was less than 1000 m,there was a significant linear positive correlation between mean shear strength and near seafloor seismic amplitude.Otherwise,there was a significant linear negative correlation between mean shear strength and near seafloor seismic amplitude.On the basis of these correlations,the pattern of shear strength was estimated from near seafloor seismic amplitude and mapped.The mean shear strength of sediments above 12 mbsf gradually decreased with increasing water depth in the continental slope area,whereas little change occurred in the continental shelf and the end of the canyon.Within the canyon area,the mean shear strength of sediments was characterized by larger values in both sides of the canyon walls and smaller values in the canyon bottom,which was consistent with the infinite slope stability theory.The study provides a method for using near seafloor seismic amplitude data to guide sediment sampling design,and presents a continuous dataset of sediment strength for the simulation of regional sediment stability.
基金This research was funded by National Program on Global Change and Air-Sea Interaction,SOA(No.GASI-GEOGE-01)National Key Research and Development Program of China(2017YFC0601401 and 2016YFC0601002)+2 种基金Qingdao National Laboratory for Marine Science and Technology(2016ASKJ13,2017ASKJ02)the financially support from the Aoshan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology to Prof.Sanzhong Li(No.2015ASTP-0S10)the Taishan Scholar Program to Prof.Sanzhong Li
文摘The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geodynamics during the multi-plate convergence in the Cenozoic.Several Cenozoic basins formed in the northern margin of the SCS,which preserve the sedimentary tectonic records of the opening of the SCS.Due to the spatial non-uniformity among different basins,a systematic study on the various basins in the northern margin of the SCS constituting the Northern Cenozoic Basin Group(NCBG) is essential.Here we present results from a detailed evaluation of the spatial-temporal migration of the boundary faults and primary unconformities to unravel the mechanism of formation of the NCBG.The NCBG is composed of the Beibu Gulf Basin(BBGB),Qiongdongnan Basin(QDNB),Pearl River Mouth Basin(PRMB) and Taixinan Basin(TXNB).Based on seismic profiles and gravity-magnetic anomalies,we confirm that the NE-striking onshore boundary faults propagated into the northern margin of the SCS.Combining the fault slip rate,fault combination and a comparison of the unconformities in different basins,we identify NE-striking rift composed of two-stage rifting events in the NCBG:an early-stage rifting(from the Paleocene to the Early Oligocene) and a late-stage rifting(from the Late Eocene to the beginning of the Miocene).Spatially only the late-stage faults occurs in the western part of the NCBG(the BBGB,the QDNB and the western PRMB),but the early-stage rifting is distributed in the whole NCBG.Temporally,the early-stage rifting can be subdivided into three phases which show an eastward migration,resulting in the same trend of the primary unconformities and peak faulting within the NCBG.The late-stage rifting is subdivided into two phases,which took place simultaneously in different basins.The first and second phase of the early-stage rifting is related to back-arc extension of the Pacific subduction retreat system.The third phase of the earlystage rifting resulted from the joint effect of slab-pull force due to southward subduction of the proto-SCS and the back-arc extension of the Pacific subduction retreat system.In addition,the first phase of the late-stage faulting corresponds with the combined effect of the post-collision extension along the Red River Fault and slab-pull force of the proto-SCS subduction.The second phase of the late-stage faulting fits well with the sinistral faulting of the Red River Fault in response to the Indochina Block escape tectonics and the slab-pull force of the proto-SCS.
基金support for this study was provided by the National Science Committee through Grants NSC 40531006, U0633007, 40576052
文摘Tintinnids were enumerated and identified in samples collected from 36 stations between 18°-22°N, 107°-122 °E in the northern South China Sea (NSCS). 44 species belonging to 24 genera of tintinnids were recorded. The dominant species were He/icostome/la /onga and Tintinnopsis radix. Tintinnids abundance ranged from 0 to 2 200 cell/L, and mean abundance was 221cell/L in the surface water. Tintinnids abundance and species numbers decreased from coast to offshore. Upwelling and Pearl River discharge influenced the distribution of tintinnids by regulating nutrients supply. Maximum abundance (2 200 cell/L) was found in the surface water of A1. Tintinnids abundance showed positive relationship with chlorophyll a (Chl a) concentration, and no significant relationship was found between tintinnids abundance and temperature.
基金The National Natural Science Foundation of China’s Major Project “Research on Geophysical Theories and Methods of Unconventional Oil and Gas Exploration and Development”, Task Ⅰ: “China’s Tight Oil and Gas Reservoir Geological Characteristics, Classification and Typical Geological Model Establishment” under contract No. 41390451the Science and Technology Project of Sinopec Shanghai Offshore Petroleum Company under contract No. KJ-2021-7
文摘A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendicular to the orientation of another well-known,large,and nearly coeval submarine channel in this area.Based on the interpretation of high-resolution 3D seismic data,this study describes and analyzes the stratigraphy,tectonics,sedimentation,morphology,structure and evolution of HGC by means of well-seismic synthetic calibration,one-and two-dimensional forward modeling,attribute interpretation,tectonic interpretation,and gas detection.The HGC is located on the downthrown side of an earlier activated normal fault and grew northwestward along the fault strike.The channel is part of a slope that extends from the western Huaguang Sag to the eastern Beijiao Uplift.The HGC underwent four developmental stages:the(1)incubation(late Sanya Formation,20.4–15.5 Ma),(2)embryonic(Meishan Formation,15.5–10.5 Ma),(3)peak(Huangliu Formation,10.5–5.5 Ma)and(4)decline(Yinggehai Formation,5.5–1.9 Ma)stages.The channel sandstones have a provenance from the southern Yongle Uplift and filled the channel via multistage vertical amalgamation and lateral migration.The channel extended 42.5 km in an approximately straight pattern in the peak stage.At 10.5 Ma,sea level fell relative to its lowest level,and three oblique progradation turbidite sand bodies filled the channel from south to north.A channel sandstone isopach map demonstrated a narrow distribution in the early stages and a fan-shaped distribution in the late stage.The formation and evolution of the HGC were controlled mainly by background tectonics,fault strike,relative sea level change,and mass supply from the Yongle Uplift.The HGC sandstone reservoir is near the Huaguangjiao Sag,where hydrocarbons were generated.Channel-bounding faults and underlying faults link the source rock with the reservoir.A regionally extensive mudstone caprock overlies the channel sandstone.Two traps likely containing gas were recognized in a structural high upstream of the channel from seismic attenuation anomalies.The HGC will likely become an important oil and gas accumulation setting in the QDNB deep-water area.
基金supported by the National Natural Science Foundation of China(Grant No.9132820142006068)Shandong Special Fund of Qingdao National Laboratory of Marine Science and Technology(No.2021QNLM020001-1).
文摘Notable differences in the structural characteristics and evolution of three adjacent sub-sags,i.e.,the Wenchang sub-sags A,B,and C,on the downthrown side of the Zhu IlI South Fault in the Wenchang Sag,are significant as they affect the formation and distribution of the oil and gas in these three sub-sags.However,the differences in their tectonic evolutions and formation mechanisms have not yet been adequately explained.In this paper,stress analysis,equilibrium profiles,and paleogeomorphic restora-tion,are used to investigate the dynamic settings,formation mechanisms,and influencing factors of the structural deformation related to the formation of the Wenchang Sag based on interpretation of seismic data.The results of the stress analysis suggest clockwise deflection of the regional tensile stress direction from a WNW-ESE trend during the Early Paleocene to NW-SE and NNW-SSE trends during the Eocene,to a nearly N-S trend during the Oligocene,and finally to a NNE-SSW trend during the Miocene.This clockwise rotation of the regional tensile stress direction led to the formation of a dextral strike-slip stress component parallel to the NE-trending Zhu I South Fault.This strike-slip stress component formed a releasing bend in sub-sag A,and may be associated with the continuous subsidence of a thick sedimentary layer in sub-sag A.It also created a restraining bend in sub-sag B,which underwent multiple structural inversions during its extension and subsidence and has a relatively s mall sedimentary thick-ness.The double restraining bend in sub-sag C is considered to have been strongly uplifted and eroded in response to this strike-slip stress component.Four obvious structural inversions in sub-sag B are iden-tified in this paper.These structural inversions correspond to the last four regional tectonic movements.This interpretation suggests that the formation of the structural inversions was likely related to the strong tensile stress and the small intersection angle between the direction of the regional tensile stress and the pre-existing boundary fault.The rotation of the tensile stress direction was responsible for the strike-slip movement on the pre-existing boundary fault and the formation of the releasing bend and restraining bend,which controlled the structural evolutions of the sub-sags.This reasonably explains the differential tectonic evolution of these three sub-sags in the Wenchang Sag,and provides a crucial idea forstructuralanalysisof similarbasins.
基金Supported by National Basic Research Program of China (973 Program) (No. 2007CB411703)the National Natural Science Foundation of China (No. 40806023)
文摘As one of the biggest marginal seas in the western Pacific margin, the South China Sea (SCS) experienced continental rifting and seafloor spreading during the Cenozoic. The northern continental margin of the SCS is classified as a passive continental margin. However, its depositional and structural evolution remains controversial, especially in the deep slope area. The lack of data hindered the correlation between continental shelf and oceanic basin, and prevented the establishment of sequence stratigraphic frame of the whole margin. The slope basins in the mid-northern margin of SCS developed in the Cenozoic; the sediments and basin infill recorded the geological history of the continental margin and the SCS spreading. Using multi-channel seismic dataset acquired in three survey cruises during 1987 to 2004, combined with the data of ODP Leg 184 core and industrial wells, we carried out the sequence stratigraphic division and correlation of the Cenozoic in the middle-northern margin of SCS with seismic profiles and sedimentary facies. We interpreted the seismic reflection properties including continuity, amplitude, fi'equency, reflection terminals, and 15 sequence boundaries of the Cenozoic in the study area, and correlated the well data in geological age. The depositional environment changed from river and lake, shallow bay to open-deep sea, in correspondence to tectonic events of syn-rifting, early drifting, and late drifting stages of basin evolution.
基金The study was supported by the National Natural Science Foundation of China(No.41876118)the Global Climate Changes and Air-Sea Interaction Program(No.GASI-02-PAC-ST-Wwin)This is MCTL(Key Laboratory of Marine Chemistry Theory and Technology)contribution#281.
文摘The northern South China Sea(NSCS)is significantly influenced by the Kuroshio intrusion and the coastal currents.Our knowledge on the roles of both currents on phytoplankton spatial variations is still inadequate.Here,we investigated the concentrations of phytoplankton biomarkers and their proportions in surface suspended particles from 47 sites of the NSCS during summer of 2017 and 2019.Brassicasterol/epi-brassicasterol,dinosterol,and C37 alkenones were used as proxies of biomass for diatoms,dinoflagellates,and haptophytes,respectively,and their sum indicating total phytoplankton biomass.A three end-member mixing model was applied to quantitatively assess the influence extent of the Kuroshio intrusion and the coastal currents.Our results showed that the Kuroshio intrusion and the coastal currents contributed equally to the overall surface water masses in the study area;however,the two currents had distinct effects on the spatial distribution of phytoplankton.For phytoplankton biomass,the eutrophic coastal currents were likely to be the main controlling factors,while the impact of the Kuroshio intrusion was weak and stimulated significant increases in phytoplankton biomass only at certain boundary sites.For phytoplankton community structures,the Kuroshio and its intrusion were the main factors,resulting in an increase in the proportions of dinoflagellates and haptophytes.The proportion of diatoms slightly increased due to the influence of the coastal currents.Our study quantifies the effects of the Kuroshio and the coastal currents on phytoplankton in the NSCS in terms of hydrological parameters,providing an important basis for the understanding of ecological functions and biogeochemical cycles in marginal sea-open ocean boundary regions.
基金This research was financially supported by Natural Science Foundation of China(U1701245,No.91228208)CGS project(DD20190213)CNPC project(kt 2021-02-02).
文摘Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South China Sea,this study analyzed the structural units,tectonic feature and geodynamics of the sedimentary basin.The new data suggests that the Nan0 an Basin is a rift basin oriented in the NE-SW direction,rather than a pull-apart basin induced by strike-slip faults along the western margin.The basin is a continuation of the rifts in the southwest South China Sea since the late Cretaceous.It continued rifting until the middle Miocene,even though oceanic crust occurred in the Southwest Subbasin.However,it had no transfer surface at the end of spreading,where it was characterized by a late middle Miocene unconformity(reflector T3).The Nan'an Basin can be divided into eight structural units by a series of NE-striking faults.This study provides evidences to confirm the relative importance and interplay between regional strike-slips and orthogonal displacement during basin development and deformation.The NE-SW-striking dominant rift basin indicates that the geodynamic drivers of tectonic evolution in the western margin of the South China Sea did not have a large strike-slip mechanism.Therefore,we conclude that a large strike-slip fault system did not exist in the western margin of the South China Sea.
基金The Major Special Project of Guangdong Provincial Laboratory of Southern Marine Science and Engineering(Guangzhou) under contract No. GML2019ZD0207the National Natural Science Foundation of China under contract No. U20A20100the China Geological Survey Project under contract Nos DD20221712, DD20221719 and DD20191002。
文摘Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in the continental slope area of the western South China Sea. Based on the interpretation and analysis of multi-beam bathymetry and two-dimensional multi-channel seismic data, the geology of the canyons has however not been studied yet. In this paper, the morphology and distribution characteristics of the canyon are carefully described,the sedimentary filling structure and its evolution process of the canyon are analyzed, and then its controlling factors are discussed. The results show that Rizhao Canyons group is a large slope restricted canyon group composed of one east-west west main and nine branch canyons extending to the south. The canyon was formed from the late Miocene to the Quaternary. The east-west main canyon is located in the transition zone between the northern terrace and the southern Zhongjiannan Slope, and it is mainly formed by the scouring and erosion of the material source from the west, approximately along the slope direction. Its development and evolution is mainly controlled by sediment supply and topographic conditions, the development of 9 branch canyons is mainly controlled by gravity flow and collapse from the east-west main canyon. This understanding result is a supplement to the study of “source-channel–sink” sedimentary system in the west of the South China Sea, and has important guiding significance for the study of marine geological hazards.
基金Supported by the Special Support Program for Cultivating High-level Talents in Guangdong Province(No.2019BT02H594)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0104)+3 种基金the National Natural Science Foundation of China(Nos.41876052,42076218,U1901217,91855101,41773039)the Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515011836,2021A1515110851)the Science and Technology Planning Project of Guangzhou(No.202201010230)the Special Research Assistant Program of Chinese Academy of Sciences to Junhui YU。
文摘The Zengmu Basin located in the shallow water area of the southern South China Sea,is rich in oil and gas resources,within which faults and mud-diapir are developed,but it is unknown whether oil and gas migrate to the seafloor surface.The newly collected multibeam data across the Zengmu Basin reveal a large number of depressions,with depths of 2-4 m,widths of several tens of meters,large distribution range of 1.8-8 km along survey line,up to~50 km,and their backscatter intensity(-26 dB)is much greater than that of the surrounding area(-38 dB).Combined with the developed mud-diapir and fracture structures,and abundant oil and gas resources within this basin,these depressions are presumed to be pockmarks.Furthermore,more than 110 mono-sized small circular pockmarks,with a depth of less than 1 m and a width of 5 m,are observed in an area of less than 0.03 km2,which are not obliterated by sediment infilling with high sedimentation rate,implying an existence of unit-pockmarks that are or recently were active.In addition,seismic profiles across the Zengmu Basin show characterization of upward migration of hydrocarbons,expressed as mud-diapir structures,bright spots in the shallow formation with characteristics of“low frequency increase and high frequency attenuation”.The subbottom profiles show the mud-diapir structures,as well as the gas-bearing blank zones beneath the seafloor.These features suggest large gas leaking and occurrence of large amounts of carbonate nodules on the seafloor.This indicates the complex and variable substrate type in the Zengmu Basin,while the area was once thought to be mainly silty sand and find sand.This is the first report on the discovery of pockmarks in the Zengmu Basin;it will provide basic information for submarine stability and marine engineering in China’s maritime boundaries.
基金National Key R&D Program of China(2023YFC3008002)National Natural Science Foundation of China(41805035)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2022A1515011288)Key Innovation Team of China Meteorological Administration(CMA2023ZD08)。
文摘Wind gusts are common environmental hazards that can damage buildings,bridges,aircraft,and cruise ships and interrupt electric power distribution,air traffic,waterway transport and port operations.Accurately predicting peak wind gusts in numerical models is essential for saving lives and preventing economic losses.This study investigates the climatology of peak wind gusts and their associated gust factors(GFs)using observations in the coastal and open ocean of the northern South China Sea(NSCS),where severe gust-producing weather occurs throughout the year.The stratified climatology demonstrates that the peak wind gust and GF vary with seasons and particularly with weather types.Based on the inversely proportional relationship between the GF and mean wind speed(MWS),a variety of GF models are constructed through least squares regression analysis.Peak gust speed(PGS)forecasts are obtained through the GF models by multiplying the GFs by observed wind speeds rather than forecasted wind speeds.The errors are thus entirely due to the representation of the GF models.The GF models are improved with weather-adaptive GFs,as evaluated by the stratified MWS.Nevertheless,these weather-adaptive GF models show negative bias for predicting stronger PGSs due to insufficient data representation of the extreme wind gusts.The evaluation of the above models provides insight into maximizing the performance of GF models.This study further proposes a stratified process for forecasting peak wind gusts for routine operations.