Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities...Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities, which have resulted from different geological processes, have been studied. The uncon- formity beneath the Dahongyu Formation is interpreted as a breakup unconformity, representing the time of transition from continental rift to passive continental margin. The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fluctuations, leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands. The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting, whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event. It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.展开更多
Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous doc...Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous documents have focused on the geochronological and geochemical aspects of the Neoproterozoic sedimentary basin in the Dahongshan region.However.展开更多
The assessment of the completeness of earthquake catalogs is a prerequisite for studying the patterns of seismic activity.In traditional approaches,the minimum magnitude of completeness(MC)is employed to evaluate cata...The assessment of the completeness of earthquake catalogs is a prerequisite for studying the patterns of seismic activity.In traditional approaches,the minimum magnitude of completeness(MC)is employed to evaluate catalog completeness,with events below MC being discarded,leading to the underutilization of the data.Detection probability is a more detailed measure of the catalog's completeness than MC;its use results in better model compatibility with data in seismic activity modeling and allows for more comprehensive utilization of seismic observation data across temporal,spatial,and magnitude dimensions.Using the magnitude-rank method and Maximum Curvature(MAXC)methods,we analyzed temporal variations in earthquake catalog completeness,finding that MC stabilized after 2010,which closely coincides with improvements in monitoring capabilities and the densification of seismic networks.Employing the probability-based magnitude of completeness(PMC)and entire magnitude range(EMR)methods,grounded in distinct foundational assumptions and computational principles,we analyzed the 2010-2023 earthquake catalog for the northern margin of the Ordos Block,aiming to assess the detection probability of earthquakes and the completeness of the earthquake catalog.The PMC method yielded the detection probability distribution for 76 stations in the distance-magnitude space.A scoring metric was designed based on station detection capabilities for small earthquakes in the near field.From the detection probabilities of stations,we inferred detection probabilities of the network for diff erent magnitude ranges and mapped the spatial distribution of the probability-based completeness magnitude.In the EMR method,we employed a segmented model fitted to the observed data to determine the detection probability and completeness magnitude for every grid point in the study region.We discussed the sample dependency and low-magnitude failure phenomena of the PMC method,noting the potential overestimation of detection probabilities for lower magnitudes and the underestimation of MC in areas with weaker monitoring capabilities.The results obtained via the two methods support these hypotheses.The assessment results indicate better monitoring capabilities on the eastern side of the study area but worse on the northwest side.The spatial distribution of network monitoring capabilities is uneven,correlating with the distribution of stations and showing significant diff erences in detection capabilities among diff erent stations.The truncation eff ects of data and station selection aff ected the evaluation results at the edges of the study area.Overall,both methods yielded detailed descriptions of the earthquake catalog,but careful selection of calculation parameters or adjustments based on the strengths of diff erent methods is necessary to correct potential biases.展开更多
The Zhouan ultramafic intrusion in the northern margin of the Yangtze Block is mainly composed of lherzolite. Zircon grains selected from lherzolite are irregular in shape with distinct oscillatory and sector zoning a...The Zhouan ultramafic intrusion in the northern margin of the Yangtze Block is mainly composed of lherzolite. Zircon grains selected from lherzolite are irregular in shape with distinct oscillatory and sector zoning and have Th/U ratios ranging from 0.8 to 10.6, indicating a magmafic origin. The weighted average 206pb/238U age is 637±4 Ma (2σ, n=15), which can be considered as the crystallization age of the Zhouan intrusion. Zircon grains have δ18O values ranging from 5.2‰to 7.0‰, with an averaged value of 5.8±0.4‰(1 or, n=33), similar to the mantle δ18O value of zircon. Their 176Hf/177Hf(t) ratios range from 0.282410 to 0.282594 with εHf(t) values ranging from 1.3 to 7.6, lower than the corresponding value of the depleted mantle (~15), indicating an enriched mantle source. The enriched mantle source may have generated from a metasomatized lithospheric mantle with subducted slab. A number of -635 Ma mafic-ultramafic intrusions in the Suizao basin are associated with coeval bimodal volcanics of the Yaolinghe Formation, indicating a continental rift setting. The ~635 Ma magmafic event in this region may represent the product of the last breakup of the Rodinia supercontinent in the northern margin of the Yangtze Block at Neoproterozoic.展开更多
文摘Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities, which have resulted from different geological processes, have been studied. The uncon- formity beneath the Dahongyu Formation is interpreted as a breakup unconformity, representing the time of transition from continental rift to passive continental margin. The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fluctuations, leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands. The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting, whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event. It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.
基金financially supported by the National Natural Science Foundation of China(grant No. 41402103,41502114 and 41372124)
文摘Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous documents have focused on the geochronological and geochemical aspects of the Neoproterozoic sedimentary basin in the Dahongshan region.However.
基金funded by Director Fund of the Inner Mongolia Autonomous Region Seismological Bureau(No.2023GG02,2023MS05)the Inner Mongolia Natural Science Foundation(No.2024MS04021)。
文摘The assessment of the completeness of earthquake catalogs is a prerequisite for studying the patterns of seismic activity.In traditional approaches,the minimum magnitude of completeness(MC)is employed to evaluate catalog completeness,with events below MC being discarded,leading to the underutilization of the data.Detection probability is a more detailed measure of the catalog's completeness than MC;its use results in better model compatibility with data in seismic activity modeling and allows for more comprehensive utilization of seismic observation data across temporal,spatial,and magnitude dimensions.Using the magnitude-rank method and Maximum Curvature(MAXC)methods,we analyzed temporal variations in earthquake catalog completeness,finding that MC stabilized after 2010,which closely coincides with improvements in monitoring capabilities and the densification of seismic networks.Employing the probability-based magnitude of completeness(PMC)and entire magnitude range(EMR)methods,grounded in distinct foundational assumptions and computational principles,we analyzed the 2010-2023 earthquake catalog for the northern margin of the Ordos Block,aiming to assess the detection probability of earthquakes and the completeness of the earthquake catalog.The PMC method yielded the detection probability distribution for 76 stations in the distance-magnitude space.A scoring metric was designed based on station detection capabilities for small earthquakes in the near field.From the detection probabilities of stations,we inferred detection probabilities of the network for diff erent magnitude ranges and mapped the spatial distribution of the probability-based completeness magnitude.In the EMR method,we employed a segmented model fitted to the observed data to determine the detection probability and completeness magnitude for every grid point in the study region.We discussed the sample dependency and low-magnitude failure phenomena of the PMC method,noting the potential overestimation of detection probabilities for lower magnitudes and the underestimation of MC in areas with weaker monitoring capabilities.The results obtained via the two methods support these hypotheses.The assessment results indicate better monitoring capabilities on the eastern side of the study area but worse on the northwest side.The spatial distribution of network monitoring capabilities is uneven,correlating with the distribution of stations and showing significant diff erences in detection capabilities among diff erent stations.The truncation eff ects of data and station selection aff ected the evaluation results at the edges of the study area.Overall,both methods yielded detailed descriptions of the earthquake catalog,but careful selection of calculation parameters or adjustments based on the strengths of diff erent methods is necessary to correct potential biases.
基金supported by the National Natural Science Foundation of China(40972060and41073026)the Hundred Talents Program of the Chinese Academy of Sciences
文摘The Zhouan ultramafic intrusion in the northern margin of the Yangtze Block is mainly composed of lherzolite. Zircon grains selected from lherzolite are irregular in shape with distinct oscillatory and sector zoning and have Th/U ratios ranging from 0.8 to 10.6, indicating a magmafic origin. The weighted average 206pb/238U age is 637±4 Ma (2σ, n=15), which can be considered as the crystallization age of the Zhouan intrusion. Zircon grains have δ18O values ranging from 5.2‰to 7.0‰, with an averaged value of 5.8±0.4‰(1 or, n=33), similar to the mantle δ18O value of zircon. Their 176Hf/177Hf(t) ratios range from 0.282410 to 0.282594 with εHf(t) values ranging from 1.3 to 7.6, lower than the corresponding value of the depleted mantle (~15), indicating an enriched mantle source. The enriched mantle source may have generated from a metasomatized lithospheric mantle with subducted slab. A number of -635 Ma mafic-ultramafic intrusions in the Suizao basin are associated with coeval bimodal volcanics of the Yaolinghe Formation, indicating a continental rift setting. The ~635 Ma magmafic event in this region may represent the product of the last breakup of the Rodinia supercontinent in the northern margin of the Yangtze Block at Neoproterozoic.