The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development...The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development Goals(SDGs)are intertwined with the concerted economic and social development of Xinjiang and the objective of achieving shared prosperity within the region.This study established a sustainable development evaluation framework by selecting 15 SDGs and 20 secondary indicators from the United Nations’SDGs.The aim of this study is to quantitatively assess the progress of SDGs at the county(city)level on the northern slope of the Kunlun Mountains.The results indicate that there are substantial variations in the scores of SDGs among the nine counties and one city located on the northern slope of the Kunlun Mountains.Notable high scores of SDGs are observed in the central and eastern regions,whereas lower scores are prevalent in the western areas.The scores of SDGs,in descending order,are as follows:62.22 for Minfeng County,54.22 for Hotan City,50.21 for Qiemo County,42.54 for Moyu County,41.56 for Ruoqiang County,41.39 for Qira County,39.86 for Lop County,38.25 for Yutian County,38.10 for Pishan County,and 36.87 for Hotan County.The performances of SDGs reveal that Hotan City,Lop County,Minfeng County,and Ruoqiang County have significant sustainable development capacity because they have three or more SDGs ranked as green color.However,Hotan County,Moyu County,Qira County,and Yutian County show the poorest performance,as they lack SDGs with green color.It is important to establish and enhance mechanisms that can ensure sustained income growth among poverty alleviation beneficiaries,sustained improvement in the capacity of rural governance,and the gradual improvement of social security system.These measures will facilitate the effective implementation of SDGs.Finally,this study offers a valuable support for governmental authorities and relevant departments in their decision-making processes.In addition,these results hold significant reference value for assessing SDGs at the county(city)level,particularly in areas characterized by low levels of economic development.展开更多
Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited ...Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited precipitation, and where human activities have greatly transformed natural desert system by clearing natural vegetation, expanding oases and even building dams on inland rivers. However, the current studies on land use patterns are still characterized by field investigations and case studies, with almost no solid scientific basis. This paper holds that land types and their combination patterns are the principal basis for designing sustainable land use patterns, and that GIS and RS-based large-scale land type mapping and the study of their spatial combination structures should be coordinated with the demand of social development. The existing environmental problems induced by irrational land use mostly result from their deviation from the natural properties of land types. Taking the northern slope of the Tianshan Mountains (NSTM) as an example and considering land type patterns as the basis of land use patterns, this paper improves the vertical oa- sis-and-mid-mountain two-belts development model and the sustainable mountain land use model for arid lands put forward in recent years; and in terms of oases patterns, it outlines oasis development models, including intensive land use pattern in alluvial-diluvial fans, moderate agricultural development pattern in alluvial plains, and ecological land use pattern in river-end oases.展开更多
Land use/cover change(LUCC)is becoming more and more frequent and extensive as a result of human activities,and is expected to have a major impact on human welfare by altering ecosystem service value(ESV).In this stud...Land use/cover change(LUCC)is becoming more and more frequent and extensive as a result of human activities,and is expected to have a major impact on human welfare by altering ecosystem service value(ESV).In this study,we utilized remote sensing images and statistical data to explore the spatial-temporal changes of land use/cover types and ESV in the northern slope economic belt of the Tianshan Mountains in Xinjiang Uygur Autonomous Region,China from 1975 to 2018.During the study period,LUCC in the study region varied significantly.Except grassland and unused land,all the other land use/cover types(cultivated land,forestland,waterbody,and construction land)increased in areas.From 1975 to 2018,the spatial-temporal variations in ESV were also pronounced.The total ESV decreased by 4.00×10^(8) CNY,which was primarily due to the reductions in the areas of grassland and unused land.Waterbody had a much higher ESV than the other land use/cover types.Ultimately,understanding the impact of LUCC on ESV and the interactions among ESV of different land use/cover types will help improve existing land use policies and provide scientific basis for developing new conservation strategies for ecologically fragile areas.展开更多
This paper discusses oasis stability at regional scale with a case study in the northern slope areas of the Tianshan Mountains (NSTM). The results showed certain significant aspects. (1) As long as water resources in ...This paper discusses oasis stability at regional scale with a case study in the northern slope areas of the Tianshan Mountains (NSTM). The results showed certain significant aspects. (1) As long as water resources in the oasis keep stable and their utilization efficiency can be maintained or gradually increased, the primary productivity could be continuously increased and the natural primary productivity keeped relatively stable. In this case, it is considered that the oasis is stable and its sustainable development can be achieved at regional scale. (2) Considering the availability of water resources in the oases, the oases on the alluvial-diluvial fans are highly stable. In the alluvial plain downstream of the groundwater overflowing zones the oases are moderately stable and in the lacustrine deltas or dry lacustrine deltas the oases are lowly stable. (3) Enlargement of oases and the increase of water resources and vegetation coverage in the oasis will certainly enhance the 'cold-island effect' of the oasis and increase the stability of oases.展开更多
In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization a...In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities,especially in arid and semi-arid areas.In the study,we chose the economic belt on the northern slope of the Tianshan Mountains(EBNSTM)in Xinjiang Uygur Autonomous Region of China as a case study.By collecting geographic data and statistical data from 2010 and 2020,we constructed an ecological resilience assessment model based on the ecosystem habitat quality(EHQ),ecosystem landscape stability(ELS),and ecosystem service value(ESV).Further,we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis,and explored its responses to climate change and human activities using the geographically weighted regression(GWR)model.The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010–2020.The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of"high in the western region and low in the eastern region",and the spatial clustering trend was enhanced during the study period.Desert,Gobi and rapidly urbanized areas showed low level of ecological resilience,and oasis and mountain areas exhibited high level of ecological resilience.Climate factors had an important impact on ecological resilience.Specifically,average annual temperature and annual precipitation were the key climate factors that improved ecological resilience,while average annual evapotranspiration was the main factor that blocked ecological resilience.Among the human activity factors,the distance from the main road showed a negative correlation with ecological resilience.Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions,whereas in the areas with poorer ecological conditions,the correlations were positive.The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.展开更多
The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of eco...The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of economic development and linkages among the cities and counties within NSEBTM is uneven.Therefore,it is of great significance to study the evolution of spatial-temporal pattern of the economic linkage network of cities and counties on NSEBTM to promote the coordinated and integrated development of the regional economy on NSEBTM.In this study,we used the modified gravity model and social network analysis method to analyze the spatio-temporal evolution characteristics of the economic linkage network structure of cities and counties on NSEBTM in 2000,2010,and 2020.The results showed that the comprehensive development quality level of cities and counties on NSEBTM increased from 2000 to 2020,its growth rate also increased,and its gap between cities and counties continued expanding.Both the spatial distribution patterns of the comprehensive development quality level of cities and counties on NSEBTM in 2000 and 2010 were presented as“high in the middle and low at both ends”,while the spatial distribution pattern of 2020 was exhibited as“high value and low value staggered”.The total amount of external economic linkages of cities and counties on NSEBTM showed an obvious upward trend,and its gap between cities and counties continued expanding,presenting a pattern of“a strong middle section and weak ends”.The direction of economic linkages of NSEBTM existed obvious central orientation and geographical proximity.The density of economic linkage network of NSEBTM increased from 2000 to 2020,and the structure of economic linkage network changed from single-core structure centered with Urumqi City to multicore structure centered with Urumqi City,Karamay City,Shihezi City,and Changji City,shifting from unbalanced development to balanced development.In the future,we should accelerate the construction of urban agglomeration on NSEBTM,cultivate a modern Urumqi metropolitan area,improve comprehensive development quality of the cities and counties at the eastern and western ends,strengthen the intensity of economic linkages between cities and counties,optimize the economic linkage network,and promote the coordinated and integrated development of regional economy.展开更多
Objective The Bayingou ophiolitic Tianshan Mountains of melange is located in Northerm the southern Central Asian Orogenic Belt which is the largest accretionary oroger among the European, Siberian, Tarim and North Ch...Objective The Bayingou ophiolitic Tianshan Mountains of melange is located in Northerm the southern Central Asian Orogenic Belt which is the largest accretionary oroger among the European, Siberian, Tarim and North Chine cratons. The Bayingou ophiolitic melange provide a critical geological record for unraveling regional tectonic histor) and testing different tectonic models. However, previous studies were mainly concentrated on geochronology, rock combination, structural feature and geochemistry ol ophiolite, with little attention to oceanic island basalts in the Bayingou ophiolitic melange. Therefore, in this study, we focus on pillow basalts from ophiolitic melange.展开更多
The granitioids in question are located in the geosynclinal fold belt of the Northern Tianshan Mountains.The magmas are intruded into a Carboniferous marine volcanic-sedimentary rock series. forming a contempo-raneous...The granitioids in question are located in the geosynclinal fold belt of the Northern Tianshan Mountains.The magmas are intruded into a Carboniferous marine volcanic-sedimentary rock series. forming a contempo-raneous. intermediate-basic to acid. composite intrusion. With a whole-rock Rb-Sr isochron age of 315.7 Ma. itis considered to be of middle Heicynian age. The granitoids have a SiO_2 content of 48-78%, a calc-alkali indexof 60 and silica-alkali indices ρ=2.2-2.4 and σ=1.5-2. From basic to acid compositions, the total REE con-tent increases from 38 to 143 ppm. δEu ranges from 0.47 to 0.86 and the Eu anomalies are negative. Thenormalized curves of REE of various rock types are very similar. These coupled with the characteristics of traceelement geochemistry show that the intrusion is an island arc-continental margin, calc-alkaline one. Theδ^(18)O values range from 5.8 to 8.9‰ and the ^(87)Sr/^(86)Sr initial ratio is 0.705. The materials of the intrusion arecomposed of a mixture of the magmas at the top of the upper mantle and in the lower crust, This indicates thatthe rocks might be consanguineous. differentiated and evolved products and possess the characteristics of Ⅰtype granites.展开更多
Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan ...Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan and northern Kunlun Mountains(TKM) based on the general circulation model(GCM) simulation ensemble from the coupled model intercomparison project phase 5(CMIP5) under the representative concentration pathway(RCP) lower emission scenario RCP4.5 and higher emission scenario RCP8.5 using the Bayesian model averaging(BMA) technique. Results show that(1) BMA significantly outperformed the simple ensemble analysis and BMA mean matches all the three observed climate variables;(2) at the end of the 21^(st) century(2070–2099) under RCP8.5, compared to the control period(1976–2005), annual mean temperature and mean annual precipitation will rise considerably by 4.8°C and 5.2%, respectively, while mean annual snowfall will dramatically decrease by 26.5%;(3) precipitation will increase in the northern Tianshan region while decrease in the Amu Darya Basin. Snowfall will significantly decrease in the western TKM. Mean annual snowfall fraction will also decrease from 0.56 of 1976–2005 to 0.42 of 2070–2099 under RCP8.5; and(4) snowfall shows a high sensitivity to temperature in autumn and spring while a low sensitivity in winter, with the highest sensitivity values occurring at the edge areas of TKM. The projections mean that flood risk will increase and solid water storage will decrease.展开更多
The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends o...The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin.展开更多
Using MOD10A1,temperature and precipitation of 21 meteorological observatories and HJ-1 / CCD data from July to September during 2002- 2013,this paper takes the Tianshan Mountains as the study area to analyze the spac...Using MOD10A1,temperature and precipitation of 21 meteorological observatories and HJ-1 / CCD data from July to September during 2002- 2013,this paper takes the Tianshan Mountains as the study area to analyze the space distribution characteristics of snow line and its influencing factors. The results show that the snowline distribution of southern and northern slopes of the Tianshan Mountains is that it is high in the south and east but low in north and west; the snowline of southern slope is sparse and there is a small spatial gradient change; the snow line is dense in the middle of northern slope,and the spatial gradient change is not large. Through the analysis of the whole study area,it is found that the correlation coefficient between snow line altitude and temperature is 0. 159,and the partial correlation coefficient between them is- 0. 212; the correlation coefficient between snow line altitude and precipitation is- 0. 668,and the partial correlation coefficient between them is- 0. 676. Precipitation is the dominant factor that affects the distribution of snow line of southern and northern slopes of the Tianshan Mountains.展开更多
Glaciers and glacial lakes are very sensitive to climate change,and studying their dynamics is important for revealing changes in global climate.In this study,we extracted the boundaries of glaciers and glacial lakes ...Glaciers and glacial lakes are very sensitive to climate change,and studying their dynamics is important for revealing changes in global climate.In this study,we extracted the boundaries of glaciers and glacial lakes in the Northern Tianshan Mountains based on Landsat TM/ETM+/OLI and Sentinel 2A/2B MSI remote sensing images and analyzed their dynamics and impacts over the past 30 years.The findings indicate that in 2020,the Northern Tianshan region exhibited a total of 3254 glaciers,with an area of 1670.55 km^(2) and a volume of 95.69 km^(3).The corresponding numbers,areas,and volumes of glacial lakes were 281,13.23 km^(2) and 210.49×10~6 m^(3),respectively.Over the past 30 years,glaciers and glacial lakes have exhibited opposite characteristics.The former decreased by 16,332.64 km^(2)(-0.60%·a^(–1)) and 18.36 km^(3)(-0.58%·a^(–1)),respectively,and the latter increased by 56 and2.48 km^(2)(0.82%·a^(–1)) and 38.88×10~6 m^(3)(0.79%·a^(–1)),respectively.Moreover,different glacier termination types cause differences in the glacier retreat rates.Lake-terminated glaciers retreated faster than land-terminated glaciers,and the type of glacier termination has a greater effect on the retreat rate than the size of the glacial area.展开更多
The Tianshan Mountains is a high and huge mountain body lying across the central part of Xinjiang, China, and is also the main area where the runoff forms in Xinjiang. In this paper, a set of RS-based study methods is...The Tianshan Mountains is a high and huge mountain body lying across the central part of Xinjiang, China, and is also the main area where the runoff forms in Xinjiang. In this paper, a set of RS-based study methods is put forward for deriving the information about the natural change of the ecology in arid areas, and the relationship between the climate change trend and the corresponding ecological response on the northern slope of the Tianshan Mountains since recent 40 years is analyzed from the scales of the land cover ecosystems and landscapes based on the observed data of climate, hydrology, modern glaciers and lakes on the northern slopes of the Tianshan Mountains since recent 40 years and the satellite RS data since recent 10 years by using the RS and GIS technologies. The results are as follows: (1) The overall trend of climate change on the northern slope of the Tianshan Mountains since recent 40 years is that both air temperature and precipitation are increased, especially the increase amplitudes of air tempera-ture, precipitation and annual runoff volume are high since the decade of the 1990s; (2) the in-tegrated indexes of the vegetation in all the geographical divisions on the northern slope of the Tianshan Mountains are obviously increased since recent 10 years, especially in the artificial oases and the foothill belts, such a change trend is advantageous for improving the vegetation ecology; and (3) the vegetation ecology in the arid areas is extremely sensitive to the climate change, the vegetation coverage and the biomass on the northern slope of the Tianshan Moun-tains are continuously increased because of the climate change since recent 10 years, their in-crease amplitudes in the plains and during the late stage are obviously higher than that in the mountainous regions and during the early stage.展开更多
Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant,and the best ...Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant,and the best single correlation coefficient is 0.74,with significance level of 0.0001. Using two residual chronologies collected from west Baiyanggou and Boerqingou,precipitation for 348 years can be reconstructed in the North Slope of middle Tianshan Mountains,its explained variance is 62%.According to much verification from independent precipitation data,historical climate records,glacier and other data.it shows that the reconstructed precipitation series of 348 years is reliable.Analysis of precipitation features indicates that there were three wet periods occurring during 1671(?)—1692,1716—1794 and 1825—1866 and three dry periods during 1693 —1715,1795—1824 and 1867—1969.Two wet periods,during 1716—1794 and 1825—1866, correspond to the times of the second and the third glacial terminal moraine formation,which is in front of No.1 glacier in Urumqi River source.According to computation,corresponding annual precipitation amounts are 59mm and 30mm more than now.The reconstructed precipitation series has a significant drying trend from 1716 to 1969.and has better representativeness to the precipitation of Urumqi and Changji Prefecture on the North Slope of Tianshan Mountains.展开更多
As a good indicator of Holocene climate, the fluctuation of alpine timberline is a synthetical result of impacts of many environmental factors dur-ing geological and historical periods and modern times. As the dominan...As a good indicator of Holocene climate, the fluctuation of alpine timberline is a synthetical result of impacts of many environmental factors dur-ing geological and historical periods and modern times. As the dominant tree species of mountainous conifer forests on the northern slope of Tianshan Mountains in Xinjiang, the distribution of Picea schrenkiana and its population size are sensitive to climatic change. The typical natural profile of Huashuwozi and the nearby Xiaoxigou archaeologi-cal profile, located in Quanzijie Township, Jimusaer County in Xinjiang, were chosen to analyze and compare the relative high-resolution pollen records, and to measure 14C dating and SEM (scanning elec-tron microscope) microstructure for charcoal frag-ments contained in Xiaoxigou profile’s cultural layers. The results show that in these two profiles, the high percentages of Picea (more than 20% and 35%, re-spectively) appeared in the stratum of the same pe-riod (2000-1300 a BP), which corresponds to the charcoal fragment’s age of Picea schrenkiana con-tained in Xiaoxigou cultural layers. These results convincingly revealed that during the period of 2000-1300 a BP, the timberline for Picea schrenkiana on the northern slope of Tianshan Mountains in Xinjiang declined by about 330m compared with the present.展开更多
Research on the spatio-temporal correlation between the intensity of human activities and the temperature of earth surfaces is of great significance in many aspects,including fully understanding the causes and mechani...Research on the spatio-temporal correlation between the intensity of human activities and the temperature of earth surfaces is of great significance in many aspects,including fully understanding the causes and mechanisms of climate change,actively adapting to climate change,pursuing rational development,and protecting the ecological environment.Taking the north slope of Tianshan Mountains,located in the arid area of northwestern China and extremely sensitive to climate change,as the research area,this study retrieves the surface temperature of the mountain based on MODIS data,while characterizing the intensity of human activities thereby data on the night light,population distribution and land use.The evolution characteristics of human activity intensity and surface temperature in the study area from 2000 to 2018 were analyzed,and the spatio-temporal correlation between them was further explored.It is found that:(1)The average human activity intensity(0.11)in the research area has kept relatively low since this century,and the overall trend has been slowly rising in a stepwise manner(0.0024·a-1);in addition,the increase in human activity intensity has lagged behind that in construction land and population by 1-2 years.(2)The annual average surface temperature in the area is 7.18℃with a pronounced growth.The rate of change(0.02℃·a-1)is about 2.33 times that of the world.The striking boost in spring(0.068℃·a-1)contributes the most to the overall warming trend.Spatially,the surface temperature is low in the south and high in the north,due to the prominent influence of the underlying surface characteristics,such as elevation and vegetation coverage.(3)The intensity of human activity and the surface temperature are remarkably positively correlated in the human activity areas there,showing a strong distribution in the east section and a weak one in the west section.The expression of its spatial differentiation and correlation is comprehensively affected by such factors as scopes of human activities,manifestations,and land-use changes.Vegetation-related human interventions,such as agriculture and forestry planting,urban greening,and afforestation,can effectively reduce the surface warming caused by human activities.This study not only puts forward new ideas to finely portray the intensity of human activities but also offers a scientific reference for regional human-land coordination and overall development.展开更多
Analyses of rock-magnetic properties of Neogene sediments of the Taxihe section, northern Tianshan Mountains, show that the section can be classified into three categories including lacustrine facies, fluvial facies a...Analyses of rock-magnetic properties of Neogene sediments of the Taxihe section, northern Tianshan Mountains, show that the section can be classified into three categories including lacustrine facies, fluvial facies and alluvial facies, which correspond to the lower, middle and upper of the Taxihe section respectively. The magnetic minerals of the lacustrine facies may be affected by the process of weath- ering, lithogenesis and biolithogenesis besides the source of the sediments. The natural remanence intensities are between 10-3 A/m and 10-2 A/m. The minerals are dominated by magnetite and the high coercive magnetic mineral may be goethite. The magnetic grains are the mixture of PSD+SD or SD+SP. The natural remanence intensities of the strata of fluvial facies are between 10-2 A/m and 10-1 A/m, about ten times that of the lacustrine facies. The magnetic minerals are mainly magnetite and hematite, and the magnetic grains are mainly PSD. The characteristic remanence (ChRM) carriers are magnetites. In the alluvial facies, the natural remanence intensities are mostly less than 1×10-2 A/m. The magnetic minerals of the series are dominated by magnetite and hematite, almost the same as the fluvial facies. But the difference is that most of the stepwise demagnetization can reveal two components and the ChRM carriers are hematites. The magnetic grains are PSD in terms of the hysteresis parameters.展开更多
基金financially supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01B234).
文摘The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development Goals(SDGs)are intertwined with the concerted economic and social development of Xinjiang and the objective of achieving shared prosperity within the region.This study established a sustainable development evaluation framework by selecting 15 SDGs and 20 secondary indicators from the United Nations’SDGs.The aim of this study is to quantitatively assess the progress of SDGs at the county(city)level on the northern slope of the Kunlun Mountains.The results indicate that there are substantial variations in the scores of SDGs among the nine counties and one city located on the northern slope of the Kunlun Mountains.Notable high scores of SDGs are observed in the central and eastern regions,whereas lower scores are prevalent in the western areas.The scores of SDGs,in descending order,are as follows:62.22 for Minfeng County,54.22 for Hotan City,50.21 for Qiemo County,42.54 for Moyu County,41.56 for Ruoqiang County,41.39 for Qira County,39.86 for Lop County,38.25 for Yutian County,38.10 for Pishan County,and 36.87 for Hotan County.The performances of SDGs reveal that Hotan City,Lop County,Minfeng County,and Ruoqiang County have significant sustainable development capacity because they have three or more SDGs ranked as green color.However,Hotan County,Moyu County,Qira County,and Yutian County show the poorest performance,as they lack SDGs with green color.It is important to establish and enhance mechanisms that can ensure sustained income growth among poverty alleviation beneficiaries,sustained improvement in the capacity of rural governance,and the gradual improvement of social security system.These measures will facilitate the effective implementation of SDGs.Finally,this study offers a valuable support for governmental authorities and relevant departments in their decision-making processes.In addition,these results hold significant reference value for assessing SDGs at the county(city)level,particularly in areas characterized by low levels of economic development.
基金National Basic Research Program of China, No.2009CB825105National Natural Science Foundation of China, No.40671015
文摘Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited precipitation, and where human activities have greatly transformed natural desert system by clearing natural vegetation, expanding oases and even building dams on inland rivers. However, the current studies on land use patterns are still characterized by field investigations and case studies, with almost no solid scientific basis. This paper holds that land types and their combination patterns are the principal basis for designing sustainable land use patterns, and that GIS and RS-based large-scale land type mapping and the study of their spatial combination structures should be coordinated with the demand of social development. The existing environmental problems induced by irrational land use mostly result from their deviation from the natural properties of land types. Taking the northern slope of the Tianshan Mountains (NSTM) as an example and considering land type patterns as the basis of land use patterns, this paper improves the vertical oa- sis-and-mid-mountain two-belts development model and the sustainable mountain land use model for arid lands put forward in recent years; and in terms of oases patterns, it outlines oasis development models, including intensive land use pattern in alluvial-diluvial fans, moderate agricultural development pattern in alluvial plains, and ecological land use pattern in river-end oases.
基金This research was funded by the Pan-Third-Polar Environmental Change and the Construction of the Green Silk Road,and the Science and Technology Special Project of the Chinese Academy of Sciences(XDA20040400).
文摘Land use/cover change(LUCC)is becoming more and more frequent and extensive as a result of human activities,and is expected to have a major impact on human welfare by altering ecosystem service value(ESV).In this study,we utilized remote sensing images and statistical data to explore the spatial-temporal changes of land use/cover types and ESV in the northern slope economic belt of the Tianshan Mountains in Xinjiang Uygur Autonomous Region,China from 1975 to 2018.During the study period,LUCC in the study region varied significantly.Except grassland and unused land,all the other land use/cover types(cultivated land,forestland,waterbody,and construction land)increased in areas.From 1975 to 2018,the spatial-temporal variations in ESV were also pronounced.The total ESV decreased by 4.00×10^(8) CNY,which was primarily due to the reductions in the areas of grassland and unused land.Waterbody had a much higher ESV than the other land use/cover types.Ultimately,understanding the impact of LUCC on ESV and the interactions among ESV of different land use/cover types will help improve existing land use policies and provide scientific basis for developing new conservation strategies for ecologically fragile areas.
基金funded by one of National Basic Research Program of China (Grant No.2009CB825105)the National Natural Science Foundation of China (Grant No.40671015)
文摘This paper discusses oasis stability at regional scale with a case study in the northern slope areas of the Tianshan Mountains (NSTM). The results showed certain significant aspects. (1) As long as water resources in the oasis keep stable and their utilization efficiency can be maintained or gradually increased, the primary productivity could be continuously increased and the natural primary productivity keeped relatively stable. In this case, it is considered that the oasis is stable and its sustainable development can be achieved at regional scale. (2) Considering the availability of water resources in the oases, the oases on the alluvial-diluvial fans are highly stable. In the alluvial plain downstream of the groundwater overflowing zones the oases are moderately stable and in the lacustrine deltas or dry lacustrine deltas the oases are lowly stable. (3) Enlargement of oases and the increase of water resources and vegetation coverage in the oasis will certainly enhance the 'cold-island effect' of the oasis and increase the stability of oases.
基金supported by the Third Xinjiang Scientific Expedition Program (2021xjkk0905).
文摘In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities,especially in arid and semi-arid areas.In the study,we chose the economic belt on the northern slope of the Tianshan Mountains(EBNSTM)in Xinjiang Uygur Autonomous Region of China as a case study.By collecting geographic data and statistical data from 2010 and 2020,we constructed an ecological resilience assessment model based on the ecosystem habitat quality(EHQ),ecosystem landscape stability(ELS),and ecosystem service value(ESV).Further,we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis,and explored its responses to climate change and human activities using the geographically weighted regression(GWR)model.The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010–2020.The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of"high in the western region and low in the eastern region",and the spatial clustering trend was enhanced during the study period.Desert,Gobi and rapidly urbanized areas showed low level of ecological resilience,and oasis and mountain areas exhibited high level of ecological resilience.Climate factors had an important impact on ecological resilience.Specifically,average annual temperature and annual precipitation were the key climate factors that improved ecological resilience,while average annual evapotranspiration was the main factor that blocked ecological resilience.Among the human activity factors,the distance from the main road showed a negative correlation with ecological resilience.Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions,whereas in the areas with poorer ecological conditions,the correlations were positive.The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(2021xjkk0905).
文摘The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of economic development and linkages among the cities and counties within NSEBTM is uneven.Therefore,it is of great significance to study the evolution of spatial-temporal pattern of the economic linkage network of cities and counties on NSEBTM to promote the coordinated and integrated development of the regional economy on NSEBTM.In this study,we used the modified gravity model and social network analysis method to analyze the spatio-temporal evolution characteristics of the economic linkage network structure of cities and counties on NSEBTM in 2000,2010,and 2020.The results showed that the comprehensive development quality level of cities and counties on NSEBTM increased from 2000 to 2020,its growth rate also increased,and its gap between cities and counties continued expanding.Both the spatial distribution patterns of the comprehensive development quality level of cities and counties on NSEBTM in 2000 and 2010 were presented as“high in the middle and low at both ends”,while the spatial distribution pattern of 2020 was exhibited as“high value and low value staggered”.The total amount of external economic linkages of cities and counties on NSEBTM showed an obvious upward trend,and its gap between cities and counties continued expanding,presenting a pattern of“a strong middle section and weak ends”.The direction of economic linkages of NSEBTM existed obvious central orientation and geographical proximity.The density of economic linkage network of NSEBTM increased from 2000 to 2020,and the structure of economic linkage network changed from single-core structure centered with Urumqi City to multicore structure centered with Urumqi City,Karamay City,Shihezi City,and Changji City,shifting from unbalanced development to balanced development.In the future,we should accelerate the construction of urban agglomeration on NSEBTM,cultivate a modern Urumqi metropolitan area,improve comprehensive development quality of the cities and counties at the eastern and western ends,strengthen the intensity of economic linkages between cities and counties,optimize the economic linkage network,and promote the coordinated and integrated development of regional economy.
基金financially supported by the National Nature Science Foundation of China(41303027, 41273033)Special Fund for Basic Scientific Research of Central Colleges,Chang'an University(grants no. 310827153506 and 310827153407)
文摘Objective The Bayingou ophiolitic Tianshan Mountains of melange is located in Northerm the southern Central Asian Orogenic Belt which is the largest accretionary oroger among the European, Siberian, Tarim and North Chine cratons. The Bayingou ophiolitic melange provide a critical geological record for unraveling regional tectonic histor) and testing different tectonic models. However, previous studies were mainly concentrated on geochronology, rock combination, structural feature and geochemistry ol ophiolite, with little attention to oceanic island basalts in the Bayingou ophiolitic melange. Therefore, in this study, we focus on pillow basalts from ophiolitic melange.
文摘The granitioids in question are located in the geosynclinal fold belt of the Northern Tianshan Mountains.The magmas are intruded into a Carboniferous marine volcanic-sedimentary rock series. forming a contempo-raneous. intermediate-basic to acid. composite intrusion. With a whole-rock Rb-Sr isochron age of 315.7 Ma. itis considered to be of middle Heicynian age. The granitoids have a SiO_2 content of 48-78%, a calc-alkali indexof 60 and silica-alkali indices ρ=2.2-2.4 and σ=1.5-2. From basic to acid compositions, the total REE con-tent increases from 38 to 143 ppm. δEu ranges from 0.47 to 0.86 and the Eu anomalies are negative. Thenormalized curves of REE of various rock types are very similar. These coupled with the characteristics of traceelement geochemistry show that the intrusion is an island arc-continental margin, calc-alkaline one. Theδ^(18)O values range from 5.8 to 8.9‰ and the ^(87)Sr/^(86)Sr initial ratio is 0.705. The materials of the intrusion arecomposed of a mixture of the magmas at the top of the upper mantle and in the lower crust, This indicates thatthe rocks might be consanguineous. differentiated and evolved products and possess the characteristics of Ⅰtype granites.
基金supported by the Thousand Youth Talents Plan(Xinjiang Project)the National Natural Science Foundation of China(41630859)the West Light Foundation of Chinese Academy of Sciences(2016QNXZB12)
文摘Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan and northern Kunlun Mountains(TKM) based on the general circulation model(GCM) simulation ensemble from the coupled model intercomparison project phase 5(CMIP5) under the representative concentration pathway(RCP) lower emission scenario RCP4.5 and higher emission scenario RCP8.5 using the Bayesian model averaging(BMA) technique. Results show that(1) BMA significantly outperformed the simple ensemble analysis and BMA mean matches all the three observed climate variables;(2) at the end of the 21^(st) century(2070–2099) under RCP8.5, compared to the control period(1976–2005), annual mean temperature and mean annual precipitation will rise considerably by 4.8°C and 5.2%, respectively, while mean annual snowfall will dramatically decrease by 26.5%;(3) precipitation will increase in the northern Tianshan region while decrease in the Amu Darya Basin. Snowfall will significantly decrease in the western TKM. Mean annual snowfall fraction will also decrease from 0.56 of 1976–2005 to 0.42 of 2070–2099 under RCP8.5; and(4) snowfall shows a high sensitivity to temperature in autumn and spring while a low sensitivity in winter, with the highest sensitivity values occurring at the edge areas of TKM. The projections mean that flood risk will increase and solid water storage will decrease.
基金supported by the funding of the Key Laboratory of Eco-hydrology Open FundChinese Academy of Sciences and Knowledge Innovation Program of the Chinese Academy of Sciences, No.KZCX2-YW-328
文摘The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin.
基金Supported by Scientific and Technological Support Project for Xinjiang Autonomous Region(2013911104)
文摘Using MOD10A1,temperature and precipitation of 21 meteorological observatories and HJ-1 / CCD data from July to September during 2002- 2013,this paper takes the Tianshan Mountains as the study area to analyze the space distribution characteristics of snow line and its influencing factors. The results show that the snowline distribution of southern and northern slopes of the Tianshan Mountains is that it is high in the south and east but low in north and west; the snowline of southern slope is sparse and there is a small spatial gradient change; the snow line is dense in the middle of northern slope,and the spatial gradient change is not large. Through the analysis of the whole study area,it is found that the correlation coefficient between snow line altitude and temperature is 0. 159,and the partial correlation coefficient between them is- 0. 212; the correlation coefficient between snow line altitude and precipitation is- 0. 668,and the partial correlation coefficient between them is- 0. 676. Precipitation is the dominant factor that affects the distribution of snow line of southern and northern slopes of the Tianshan Mountains.
基金The Third Xinjiang Scientific Expedition Program,No.2021xjkk0801National Natural Science Foundation of China,No.42161027。
文摘Glaciers and glacial lakes are very sensitive to climate change,and studying their dynamics is important for revealing changes in global climate.In this study,we extracted the boundaries of glaciers and glacial lakes in the Northern Tianshan Mountains based on Landsat TM/ETM+/OLI and Sentinel 2A/2B MSI remote sensing images and analyzed their dynamics and impacts over the past 30 years.The findings indicate that in 2020,the Northern Tianshan region exhibited a total of 3254 glaciers,with an area of 1670.55 km^(2) and a volume of 95.69 km^(3).The corresponding numbers,areas,and volumes of glacial lakes were 281,13.23 km^(2) and 210.49×10~6 m^(3),respectively.Over the past 30 years,glaciers and glacial lakes have exhibited opposite characteristics.The former decreased by 16,332.64 km^(2)(-0.60%·a^(–1)) and 18.36 km^(3)(-0.58%·a^(–1)),respectively,and the latter increased by 56 and2.48 km^(2)(0.82%·a^(–1)) and 38.88×10~6 m^(3)(0.79%·a^(–1)),respectively.Moreover,different glacier termination types cause differences in the glacier retreat rates.Lake-terminated glaciers retreated faster than land-terminated glaciers,and the type of glacier termination has a greater effect on the retreat rate than the size of the glacial area.
基金the important orientation program of the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX3-SW-327).
文摘The Tianshan Mountains is a high and huge mountain body lying across the central part of Xinjiang, China, and is also the main area where the runoff forms in Xinjiang. In this paper, a set of RS-based study methods is put forward for deriving the information about the natural change of the ecology in arid areas, and the relationship between the climate change trend and the corresponding ecological response on the northern slope of the Tianshan Mountains since recent 40 years is analyzed from the scales of the land cover ecosystems and landscapes based on the observed data of climate, hydrology, modern glaciers and lakes on the northern slopes of the Tianshan Mountains since recent 40 years and the satellite RS data since recent 10 years by using the RS and GIS technologies. The results are as follows: (1) The overall trend of climate change on the northern slope of the Tianshan Mountains since recent 40 years is that both air temperature and precipitation are increased, especially the increase amplitudes of air tempera-ture, precipitation and annual runoff volume are high since the decade of the 1990s; (2) the in-tegrated indexes of the vegetation in all the geographical divisions on the northern slope of the Tianshan Mountains are obviously increased since recent 10 years, especially in the artificial oases and the foothill belts, such a change trend is advantageous for improving the vegetation ecology; and (3) the vegetation ecology in the arid areas is extremely sensitive to the climate change, the vegetation coverage and the biomass on the northern slope of the Tianshan Moun-tains are continuously increased because of the climate change since recent 10 years, their in-crease amplitudes in the plains and during the late stage are obviously higher than that in the mountainous regions and during the early stage.
基金funded by Xinjiang Science and Technology Commission(980103002)by the National Key Project for Basic Research(G199043501)+1 种基金by the foundation of the open laboratory of National Climate Center,China Meteorological Administrationby the foundation of Observation and Experiment Station of Tianshan Mountain Glacier,Chinese Academy of Seienecs.
文摘Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant,and the best single correlation coefficient is 0.74,with significance level of 0.0001. Using two residual chronologies collected from west Baiyanggou and Boerqingou,precipitation for 348 years can be reconstructed in the North Slope of middle Tianshan Mountains,its explained variance is 62%.According to much verification from independent precipitation data,historical climate records,glacier and other data.it shows that the reconstructed precipitation series of 348 years is reliable.Analysis of precipitation features indicates that there were three wet periods occurring during 1671(?)—1692,1716—1794 and 1825—1866 and three dry periods during 1693 —1715,1795—1824 and 1867—1969.Two wet periods,during 1716—1794 and 1825—1866, correspond to the times of the second and the third glacial terminal moraine formation,which is in front of No.1 glacier in Urumqi River source.According to computation,corresponding annual precipitation amounts are 59mm and 30mm more than now.The reconstructed precipitation series has a significant drying trend from 1716 to 1969.and has better representativeness to the precipitation of Urumqi and Changji Prefecture on the North Slope of Tianshan Mountains.
基金supported by the National Natural Science Foundation of China(Grant No.90102009)the Scientific Research Foundation for the Returned 0verseas Chinese Scholars,State Education Ministry,the Innovation Project of the Chinese Academy of Sciences(Grant No.KZCXI-10-05)973 project(Grant No.G1999043502).
文摘As a good indicator of Holocene climate, the fluctuation of alpine timberline is a synthetical result of impacts of many environmental factors dur-ing geological and historical periods and modern times. As the dominant tree species of mountainous conifer forests on the northern slope of Tianshan Mountains in Xinjiang, the distribution of Picea schrenkiana and its population size are sensitive to climatic change. The typical natural profile of Huashuwozi and the nearby Xiaoxigou archaeologi-cal profile, located in Quanzijie Township, Jimusaer County in Xinjiang, were chosen to analyze and compare the relative high-resolution pollen records, and to measure 14C dating and SEM (scanning elec-tron microscope) microstructure for charcoal frag-ments contained in Xiaoxigou profile’s cultural layers. The results show that in these two profiles, the high percentages of Picea (more than 20% and 35%, re-spectively) appeared in the stratum of the same pe-riod (2000-1300 a BP), which corresponds to the charcoal fragment’s age of Picea schrenkiana con-tained in Xiaoxigou cultural layers. These results convincingly revealed that during the period of 2000-1300 a BP, the timberline for Picea schrenkiana on the northern slope of Tianshan Mountains in Xinjiang declined by about 330m compared with the present.
基金National Natural Science Foundation of China(41461086)National Natural Science Foundation of China(41761108)。
文摘Research on the spatio-temporal correlation between the intensity of human activities and the temperature of earth surfaces is of great significance in many aspects,including fully understanding the causes and mechanisms of climate change,actively adapting to climate change,pursuing rational development,and protecting the ecological environment.Taking the north slope of Tianshan Mountains,located in the arid area of northwestern China and extremely sensitive to climate change,as the research area,this study retrieves the surface temperature of the mountain based on MODIS data,while characterizing the intensity of human activities thereby data on the night light,population distribution and land use.The evolution characteristics of human activity intensity and surface temperature in the study area from 2000 to 2018 were analyzed,and the spatio-temporal correlation between them was further explored.It is found that:(1)The average human activity intensity(0.11)in the research area has kept relatively low since this century,and the overall trend has been slowly rising in a stepwise manner(0.0024·a-1);in addition,the increase in human activity intensity has lagged behind that in construction land and population by 1-2 years.(2)The annual average surface temperature in the area is 7.18℃with a pronounced growth.The rate of change(0.02℃·a-1)is about 2.33 times that of the world.The striking boost in spring(0.068℃·a-1)contributes the most to the overall warming trend.Spatially,the surface temperature is low in the south and high in the north,due to the prominent influence of the underlying surface characteristics,such as elevation and vegetation coverage.(3)The intensity of human activity and the surface temperature are remarkably positively correlated in the human activity areas there,showing a strong distribution in the east section and a weak one in the west section.The expression of its spatial differentiation and correlation is comprehensively affected by such factors as scopes of human activities,manifestations,and land-use changes.Vegetation-related human interventions,such as agriculture and forestry planting,urban greening,and afforestation,can effectively reduce the surface warming caused by human activities.This study not only puts forward new ideas to finely portray the intensity of human activities but also offers a scientific reference for regional human-land coordination and overall development.
基金Supported by Major State Basic Research Program of China (Grant No. 2001 CB409804).
文摘Analyses of rock-magnetic properties of Neogene sediments of the Taxihe section, northern Tianshan Mountains, show that the section can be classified into three categories including lacustrine facies, fluvial facies and alluvial facies, which correspond to the lower, middle and upper of the Taxihe section respectively. The magnetic minerals of the lacustrine facies may be affected by the process of weath- ering, lithogenesis and biolithogenesis besides the source of the sediments. The natural remanence intensities are between 10-3 A/m and 10-2 A/m. The minerals are dominated by magnetite and the high coercive magnetic mineral may be goethite. The magnetic grains are the mixture of PSD+SD or SD+SP. The natural remanence intensities of the strata of fluvial facies are between 10-2 A/m and 10-1 A/m, about ten times that of the lacustrine facies. The magnetic minerals are mainly magnetite and hematite, and the magnetic grains are mainly PSD. The characteristic remanence (ChRM) carriers are magnetites. In the alluvial facies, the natural remanence intensities are mostly less than 1×10-2 A/m. The magnetic minerals of the series are dominated by magnetite and hematite, almost the same as the fluvial facies. But the difference is that most of the stepwise demagnetization can reveal two components and the ChRM carriers are hematites. The magnetic grains are PSD in terms of the hysteresis parameters.