The EU’s Artificial Intelligence Act(AI Act)imposes requirements for the privacy compliance of AI systems.AI systems must comply with privacy laws such as the GDPR when providing services.These laws provide users wit...The EU’s Artificial Intelligence Act(AI Act)imposes requirements for the privacy compliance of AI systems.AI systems must comply with privacy laws such as the GDPR when providing services.These laws provide users with the right to issue a Data Subject Access Request(DSAR).Responding to such requests requires database administrators to identify information related to an individual accurately.However,manual compliance poses significant challenges and is error-prone.Database administrators need to write queries through time-consuming labor.The demand for large amounts of data by AI systems has driven the development of NoSQL databases.Due to the flexible schema of NoSQL databases,identifying personal information becomes even more challenging.This paper develops an automated tool to identify personal information that can help organizations respond to DSAR.Our tool employs a combination of various technologies,including schema extraction of NoSQL databases and relationship identification from query logs.We describe the algorithm used by our tool,detailing how it discovers and extracts implicit relationships from NoSQL databases and generates relationship graphs to help developers accurately identify personal data.We evaluate our tool on three datasets,covering different database designs,achieving an F1 score of 0.77 to 1.Experimental results demonstrate that our tool successfully identifies information relevant to the data subject.Our tool reduces manual effort and simplifies GDPR compliance,showing practical application value in enhancing the privacy performance of NOSQL databases and AI systems.展开更多
A data lake(DL),abbreviated as DL,denotes a vast reservoir or repository of data.It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various form...A data lake(DL),abbreviated as DL,denotes a vast reservoir or repository of data.It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various forms of semi-structured,structured,and unstructured information.These systems use a flat architecture and run different types of data analytics.NoSQL databases are nontabular and store data in a different manner than the relational table.NoSQL databases come in various forms,including key-value pairs,documents,wide columns,and graphs,each based on its data model.They offer simpler scalability and generally outperform traditional relational databases.While NoSQL databases can store diverse data types,they lack full support for atomicity,consistency,isolation,and durability features found in relational databases.Consequently,employing machine learning approaches becomes necessary to categorize complex structured query language(SQL)queries.Results indicate that the most frequently used automatic classification technique in processing SQL queries on NoSQL databases is machine learning-based classification.Overall,this study provides an overview of the automatic classification techniques used in processing SQL queries on NoSQL databases.Understanding these techniques can aid in the development of effective and efficient NoSQL database applications.展开更多
Abstract NoSQL databases are famed for the characteristics of high scalability, high availability, and high faulttolerance. So NoSQL databases are used in a lot of applications. The data partitioning strategy and frag...Abstract NoSQL databases are famed for the characteristics of high scalability, high availability, and high faulttolerance. So NoSQL databases are used in a lot of applications. The data partitioning strategy and fragment allocation strategy directly affect NoSQL database systems' performance. The data partition strategy of large, global databases is performed by horizontally, vertically partitioning or combination of both. In the general way the system scatters the related fragments as possible to improve operations' parallel degree. But the operations are usually not very complicated in some applications, and an operation may access to more than one fragment. At the same time, those fragments which have to be accessed by an operation may interact with each other. The general allocation strategies will increase system's communication cost during operations execution over sites. In order to improve those applications' performance and enable NoSQL database systems to work efficiently, these applications' fragments have to be allocated in a reasonable way that can reduce the communication cost i.e., to minimize the total volume of data transmitted during operations execution over sites. A strategy of clustering fragments based onhypergraph is proposed, which can cluster fragments which were accessed together in most operations to the same cluster. The method uses a weighted hypergraph to represent the fragments' access pattem of operations. A hypergraph partitioning algorithm is used to cluster fragments in our strategy. This method can reduce the amount of sites that an operation has to span. So it can reduce the communication cost over sites. Experimental results confirm that the proposed technique will effectively contribute in solving fragments re-allocation problem in a specific application environment of NoSQL database system.展开更多
There is a great thrust in industry toward the development of more feasible and viable tools for storing fast-growing volume, velocity, and diversity of data, termed 'big data'. The structural shift of the storage m...There is a great thrust in industry toward the development of more feasible and viable tools for storing fast-growing volume, velocity, and diversity of data, termed 'big data'. The structural shift of the storage mechanism from traditional data management systems to NoSQL technology is due to the intention of fulfilling big data storage requirements. However, the available big data storage technologies are inefficient to provide consistent, scalable, and available solutions for continuously growing heterogeneous data. Storage is the preliminary process of big data analytics for real-world applications such as scientific experiments, healthcare, social networks, and e-business. So far, Amazon, Google, and Apache are some of the industry standards in providing big data storage solutions, yet the literature does not report an in-depth survey of storage technologies available for big data, investigating the performance and magnitude gains of these technologies. The primary objective of this paper is to conduct a comprehensive investigation of state-of-the-art storage technologies available for big data. A well-defined taxonomy of big data storage technologies is presented to assist data analysts and researchers in understanding and selecting a storage mecha- nism that better fits their needs. To evaluate the performance of different storage architectures, we compare and analyze the ex- isling approaches using Brewer's CAP theorem. The significance and applications of storage technologies and support to other categories are discussed. Several future research challenges are highlighted with the intention to expedite the deployment of a reliable and scalable storage system.展开更多
The archiving of Internet traffic is an essential function for retrospective network event analysis and forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves stora...The archiving of Internet traffic is an essential function for retrospective network event analysis and forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves storage and analysis of network flow statistic. However, this approach loses much valuable information within the Internet traffic. With the advancement of commodity hardware, in particular the volume of storage devices and the speed of interconnect technologies used in network adapter cards and multi-core processors, it is now possible to capture 10 Gbps and beyond real-time network traffic using a commodity computer, such as n2disk. Also with the advancement of distributed file system (such as Hadoop, ZFS, etc.) and open cloud computing platform (such as OpenStack, CloudStack, and Eucalyptus, etc.), it is practical to store such large volume of traffic data and fully in-depth analyse the inside communication within an acceptable latency. In this paper, based on well- known TimeMachine, we present TIFAflow, the design and implementation of a novel system for archiving and querying network flows. Firstly, we enhance the traffic archiving system named TImemachine+FAstbit (TIFA) with flow granularity, i.e., supply the system with flow table and flow module. Secondly, based on real network traces, we conduct performance comparison experiments of TIFAflow with other implementations such as common database solution, TimeMachine and TIFA system. Finally, based on comparison results, we demonstrate that TIFAflow has a higher performance improvement in storing and querying performance than TimeMachine and TIFA, both in time and space metrics.展开更多
Logic flaws within web applications will allow malicious operations to be triggered towards back-end database. Existing approaches to identifying logic flaws of database accesses are strongly tied to structured query ...Logic flaws within web applications will allow malicious operations to be triggered towards back-end database. Existing approaches to identifying logic flaws of database accesses are strongly tied to structured query language (SQL) statement construction and cannot be applied to the new generation of web applications that use not only structured query language (NoSQL) databases as the storage tier. In this paper, we present Lom, a black-box approach for discovering many categories of logic flaws within MongoDB- based web applications. Our approach introduces a MongoDB operation model to support new features of MongoDB and models the application logic as a mealy finite state machine. During the testing phase, test inputs which emulate state violation attacks are constructed for identifying logic flaws at each application state. We apply Lom to several MongoDB-based web applications and demonstrate its effectiveness.展开更多
基金supported by the National Natural Science Foundation of China(No.62302242)the China Postdoctoral Science Foundation(No.2023M731802).
文摘The EU’s Artificial Intelligence Act(AI Act)imposes requirements for the privacy compliance of AI systems.AI systems must comply with privacy laws such as the GDPR when providing services.These laws provide users with the right to issue a Data Subject Access Request(DSAR).Responding to such requests requires database administrators to identify information related to an individual accurately.However,manual compliance poses significant challenges and is error-prone.Database administrators need to write queries through time-consuming labor.The demand for large amounts of data by AI systems has driven the development of NoSQL databases.Due to the flexible schema of NoSQL databases,identifying personal information becomes even more challenging.This paper develops an automated tool to identify personal information that can help organizations respond to DSAR.Our tool employs a combination of various technologies,including schema extraction of NoSQL databases and relationship identification from query logs.We describe the algorithm used by our tool,detailing how it discovers and extracts implicit relationships from NoSQL databases and generates relationship graphs to help developers accurately identify personal data.We evaluate our tool on three datasets,covering different database designs,achieving an F1 score of 0.77 to 1.Experimental results demonstrate that our tool successfully identifies information relevant to the data subject.Our tool reduces manual effort and simplifies GDPR compliance,showing practical application value in enhancing the privacy performance of NOSQL databases and AI systems.
基金supported by the Student Scheme provided by Universiti Kebangsaan Malaysia with the Code TAP-20558.
文摘A data lake(DL),abbreviated as DL,denotes a vast reservoir or repository of data.It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various forms of semi-structured,structured,and unstructured information.These systems use a flat architecture and run different types of data analytics.NoSQL databases are nontabular and store data in a different manner than the relational table.NoSQL databases come in various forms,including key-value pairs,documents,wide columns,and graphs,each based on its data model.They offer simpler scalability and generally outperform traditional relational databases.While NoSQL databases can store diverse data types,they lack full support for atomicity,consistency,isolation,and durability features found in relational databases.Consequently,employing machine learning approaches becomes necessary to categorize complex structured query language(SQL)queries.Results indicate that the most frequently used automatic classification technique in processing SQL queries on NoSQL databases is machine learning-based classification.Overall,this study provides an overview of the automatic classification techniques used in processing SQL queries on NoSQL databases.Understanding these techniques can aid in the development of effective and efficient NoSQL database applications.
基金Thanks to the anonymous reviewers for their insightful comments. This work was supported by National High Technology Research and Development Plan of China ("863" plan)(2012AA012600, 2012AA01A402, 2012AA01A401, 2011AA010702 and 2010AA012505) the National Natural Science Foundation of China (Grant Nos. 60933005 and 91124002)+1 种基金 the National Key Technology Research and Development Program of China (2012BAH38B04 and 2012BAH38B06) National 242 Information Security Program of China (2011A010).
文摘Abstract NoSQL databases are famed for the characteristics of high scalability, high availability, and high faulttolerance. So NoSQL databases are used in a lot of applications. The data partitioning strategy and fragment allocation strategy directly affect NoSQL database systems' performance. The data partition strategy of large, global databases is performed by horizontally, vertically partitioning or combination of both. In the general way the system scatters the related fragments as possible to improve operations' parallel degree. But the operations are usually not very complicated in some applications, and an operation may access to more than one fragment. At the same time, those fragments which have to be accessed by an operation may interact with each other. The general allocation strategies will increase system's communication cost during operations execution over sites. In order to improve those applications' performance and enable NoSQL database systems to work efficiently, these applications' fragments have to be allocated in a reasonable way that can reduce the communication cost i.e., to minimize the total volume of data transmitted during operations execution over sites. A strategy of clustering fragments based onhypergraph is proposed, which can cluster fragments which were accessed together in most operations to the same cluster. The method uses a weighted hypergraph to represent the fragments' access pattem of operations. A hypergraph partitioning algorithm is used to cluster fragments in our strategy. This method can reduce the amount of sites that an operation has to span. So it can reduce the communication cost over sites. Experimental results confirm that the proposed technique will effectively contribute in solving fragments re-allocation problem in a specific application environment of NoSQL database system.
文摘There is a great thrust in industry toward the development of more feasible and viable tools for storing fast-growing volume, velocity, and diversity of data, termed 'big data'. The structural shift of the storage mechanism from traditional data management systems to NoSQL technology is due to the intention of fulfilling big data storage requirements. However, the available big data storage technologies are inefficient to provide consistent, scalable, and available solutions for continuously growing heterogeneous data. Storage is the preliminary process of big data analytics for real-world applications such as scientific experiments, healthcare, social networks, and e-business. So far, Amazon, Google, and Apache are some of the industry standards in providing big data storage solutions, yet the literature does not report an in-depth survey of storage technologies available for big data, investigating the performance and magnitude gains of these technologies. The primary objective of this paper is to conduct a comprehensive investigation of state-of-the-art storage technologies available for big data. A well-defined taxonomy of big data storage technologies is presented to assist data analysts and researchers in understanding and selecting a storage mecha- nism that better fits their needs. To evaluate the performance of different storage architectures, we compare and analyze the ex- isling approaches using Brewer's CAP theorem. The significance and applications of storage technologies and support to other categories are discussed. Several future research challenges are highlighted with the intention to expedite the deployment of a reliable and scalable storage system.
基金the National Key Basic Research and Development (973) Program of China (Nos. 2012CB315801 and 2011CB302805)the National Natural Science Foundation of China A3 Program (No. 61161140320) and the National Natural Science Foundation of China (No. 61233016)Intel Research Councils UPO program with title of security Vulnerability Analysis based on Cloud Platform with Intel IA Architecture
文摘The archiving of Internet traffic is an essential function for retrospective network event analysis and forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves storage and analysis of network flow statistic. However, this approach loses much valuable information within the Internet traffic. With the advancement of commodity hardware, in particular the volume of storage devices and the speed of interconnect technologies used in network adapter cards and multi-core processors, it is now possible to capture 10 Gbps and beyond real-time network traffic using a commodity computer, such as n2disk. Also with the advancement of distributed file system (such as Hadoop, ZFS, etc.) and open cloud computing platform (such as OpenStack, CloudStack, and Eucalyptus, etc.), it is practical to store such large volume of traffic data and fully in-depth analyse the inside communication within an acceptable latency. In this paper, based on well- known TimeMachine, we present TIFAflow, the design and implementation of a novel system for archiving and querying network flows. Firstly, we enhance the traffic archiving system named TImemachine+FAstbit (TIFA) with flow granularity, i.e., supply the system with flow table and flow module. Secondly, based on real network traces, we conduct performance comparison experiments of TIFAflow with other implementations such as common database solution, TimeMachine and TIFA system. Finally, based on comparison results, we demonstrate that TIFAflow has a higher performance improvement in storing and querying performance than TimeMachine and TIFA, both in time and space metrics.
基金supported by China Scholarship Council,Tianjin Science and Technology Committee(No.12JCZDJC20800)Science and Technology Planning Project of Tianjin(No.13ZCZDGX01098)+2 种基金NSF TRUST(The Team for Research in Ubiquitous Secure Technology)Science and Technology Center(No.CCF-0424422)National High Technology Research and Development Program of Chia(863Program)(No.2013BAH01B05)National Natural Science Foundation of China(No.61402264)
文摘Logic flaws within web applications will allow malicious operations to be triggered towards back-end database. Existing approaches to identifying logic flaws of database accesses are strongly tied to structured query language (SQL) statement construction and cannot be applied to the new generation of web applications that use not only structured query language (NoSQL) databases as the storage tier. In this paper, we present Lom, a black-box approach for discovering many categories of logic flaws within MongoDB- based web applications. Our approach introduces a MongoDB operation model to support new features of MongoDB and models the application logic as a mealy finite state machine. During the testing phase, test inputs which emulate state violation attacks are constructed for identifying logic flaws at each application state. We apply Lom to several MongoDB-based web applications and demonstrate its effectiveness.