Secretion systems, macromolecules to pass which can mediate the across cellular membranes, are essential for virulent and genetic material exchange among bacterial species[1]. Type IV secretion system (T4SS) is one ...Secretion systems, macromolecules to pass which can mediate the across cellular membranes, are essential for virulent and genetic material exchange among bacterial species[1]. Type IV secretion system (T4SS) is one of the secretion systems and it usually consists of 12 genes: VirB1, VirB2 ...VirB11, and VirD4[2]. The structure and molecular mechanisms of these genes have been well analyzed in Gram-negative strains[3] and Gram-positive strains were once believed to be lack of T4SS. However, some recent studies revealed that one or more virB/D genes also exist in some kinds of Gram-positive bacteria and play similar role, and form a T4SS-like system[3]. The VirBl-like, VirB4, VirB6, and VirD4 genes were identified in the chromosome of Gram-positive bacterium Streptococcus suis in our previous studies and their role as important mobile elements for horizontal transfer to recipients in an 89 K pathogenicity island (PAl) was demonstrated[45]. However, their structure and molecular mechanisms in other strains, especially in Gram-positive strains, are remained unclear.展开更多
A pilot-scale Orbed oxidation ditch was operated for 17 months to optimize nitrogen removal from domestic wastewater of average COD to total nitrogen ratio of 2.7, with particular concern about the roles of dissolved ...A pilot-scale Orbed oxidation ditch was operated for 17 months to optimize nitrogen removal from domestic wastewater of average COD to total nitrogen ratio of 2.7, with particular concern about the roles of dissolved oxygen (DO), mixed liquor suspended solids (MLSS) and return activated sludge (RAS) recycle ratio. Remarkable simultaneous nitrification and denitrification (SND) was observed and mean total nitrogen (TN) removal efficiency up to 72.1% was steadily achieved, at DO concentration in the out, middle and inner channel of 0.1, 0.4 and 0.7 mg/L, respectively, with an average M LSS of 5.5 g/L and RAS recycle ratio of 150%. Although the out channel took the major role in TN removal, the role of middle channel should never be ignored. The denitrification potential could be fully developed under low DO, high MLSS with adequate RAS ratio. The sludge settleability was amazingly improved under low DO operation mode, and some explanations were tried. In addition, a scries of simplified batch tests were done to determine whether novel microorganisms could make substantial contribution to the performance of nitrogen removal. The results indicated that the SND observed in this Orbal oxidation ditch was more likely a physical phenomenon.展开更多
基金supported by the National Natural Science Foundation of China (No. 81201322)the Priority Project on Infectious Disease Control and Prevention 2011ZX10004-001 and 2013ZX10003006-002 by the Chinese Ministry of Science and Technology and the Chinese Ministry of Healththe Foundation of State Key Laboratory for Infectious Disease Prevention and Control (Grand No. 2011SKLID303)
文摘Secretion systems, macromolecules to pass which can mediate the across cellular membranes, are essential for virulent and genetic material exchange among bacterial species[1]. Type IV secretion system (T4SS) is one of the secretion systems and it usually consists of 12 genes: VirB1, VirB2 ...VirB11, and VirD4[2]. The structure and molecular mechanisms of these genes have been well analyzed in Gram-negative strains[3] and Gram-positive strains were once believed to be lack of T4SS. However, some recent studies revealed that one or more virB/D genes also exist in some kinds of Gram-positive bacteria and play similar role, and form a T4SS-like system[3]. The VirBl-like, VirB4, VirB6, and VirD4 genes were identified in the chromosome of Gram-positive bacterium Streptococcus suis in our previous studies and their role as important mobile elements for horizontal transfer to recipients in an 89 K pathogenicity island (PAl) was demonstrated[45]. However, their structure and molecular mechanisms in other strains, especially in Gram-positive strains, are remained unclear.
基金The Key International Cooperative Programs of National Natural Science Foundation of China (No. 50521140075) and the NationalNatural Science Foundation of China (No. 50478040)
文摘A pilot-scale Orbed oxidation ditch was operated for 17 months to optimize nitrogen removal from domestic wastewater of average COD to total nitrogen ratio of 2.7, with particular concern about the roles of dissolved oxygen (DO), mixed liquor suspended solids (MLSS) and return activated sludge (RAS) recycle ratio. Remarkable simultaneous nitrification and denitrification (SND) was observed and mean total nitrogen (TN) removal efficiency up to 72.1% was steadily achieved, at DO concentration in the out, middle and inner channel of 0.1, 0.4 and 0.7 mg/L, respectively, with an average M LSS of 5.5 g/L and RAS recycle ratio of 150%. Although the out channel took the major role in TN removal, the role of middle channel should never be ignored. The denitrification potential could be fully developed under low DO, high MLSS with adequate RAS ratio. The sludge settleability was amazingly improved under low DO operation mode, and some explanations were tried. In addition, a scries of simplified batch tests were done to determine whether novel microorganisms could make substantial contribution to the performance of nitrogen removal. The results indicated that the SND observed in this Orbal oxidation ditch was more likely a physical phenomenon.