Fasciclin-like arabinogalactan proteins(FLAs),a subclass of arabinogalactan proteins(AGPs),are usually involved in cell development in plants.To investigate the expression profiling as well
Schwann cells are the myelinating glial cells of the peripheral nervous system(PNS).By establishing lipid-rich myelin sheaths around large-caliber axons,they ensure that electrical signal transmission is accelerated...Schwann cells are the myelinating glial cells of the peripheral nervous system(PNS).By establishing lipid-rich myelin sheaths around large-caliber axons,they ensure that electrical signal transmission is accelerated-a process referred to as saltatory signal propagation.Apart from this prominent physiological function,these cells also exert important pathophysiological roles in PNS injuries or dis- eases. In contrast to the central nervous system (CNS), the adult PNS retains a remarkably high degree of intrinsic re- generation. As a consequence, transected axons and dam- aged myelin sheaths can be repaired and nerve functional- ity can be restored. This spontaneous regenerative capacity depends on (inter) actions of macrophages, neurons, and Schwann cells.展开更多
Dihydrofolate reductase (DHFR) is an enzyme that catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). Chemotherapy drugs such as methotrexate help to slow the progression of cancer by limiting the...Dihydrofolate reductase (DHFR) is an enzyme that catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). Chemotherapy drugs such as methotrexate help to slow the progression of cancer by limiting the ability of dividing cells to make nucleotides by competitively inhibiting DHFR. Nonsteroidal anti-inflammatory drugs (NSAIDs) have been previously reported to exhibit competitive inhibition of DHFR, in addition to their primary action on cyclooxygenase enzymes. This interaction interferes with the enzymatic reduction of dihydrofolate to tetrahydrofolate, thereby impeding the folate metabolism pathway essential for nucleotide synthesis and cell proliferation. This activity stems from their structural resemblance to the p-aminobenzoyl-l-glutamate (pABG) moiety of folate, a substrate of DHFR. It has been established that NSAIDs containing a salicylate group (which has structural similarities to pABG), such as diflunisal, exhibit stronger DHFR-binding activity. In this study, we synthesized salicylate derivatives of naproxen with the aim of exploring their potential as inhibitors of DHFR. The interactions between these derivatives and human DHFR were characterized using a combination of biochemical, biophysical, and structural methods. Through polyacrylamide gel electrophoresis (PAGE) analysis, enzymatic assays, and quantitative ELISA, we investigated the binding affinity and inhibitory potency of the synthesized salicylate derivatives towards DHFR. The findings of this study suggest the potential of salicylate derivatives of naproxen as promising candidates for the inhibition of DHFR, thereby offering novel therapeutic opportunities for modulating the inflammatory process through multiple pathways. Further optimization of these derivatives could lead to the development of more efficacious dual-targeted analogs with enhanced therapeutic benefits.展开更多
Microscopic imaging of fluorescent reporters for key meristem regulators in live tissues is emerging as a powerful technique, enabling researchers to observe dynamic spatial and temporal distribution of hormonal and d...Microscopic imaging of fluorescent reporters for key meristem regulators in live tissues is emerging as a powerful technique, enabling researchers to observe dynamic spatial and temporal distribution of hormonal and developmental regulators in living cells. Aided by time-lapse microphotography, new types of imaging acquisition and analysis software, and computational modeling, we are gaining significant insights into shoot apical meristem (SAM) behavior and function. This review is focused on summarizing recent advances in the understanding of SAM organization, development, and behavior derived from live-imaging techniques. This includes the revelation of mechanical forces in microtubule-controlled anisotropic growth, the role of the CLV-WUS network in the specification of peripheral zone and central zone cells, the multiple feedback loops involving cytokinin in controlling WUS expression, auxin dynamics in determining the position of new primordia, and, finally, sequence of regulatory events leading to de novo assembly of shoots from callus in culture. Future studies toward formulating "digital SAM" that incorporates multi-dimensional data ranging from images of SAM morphogenesis to a genome-scale expression map of SAM will greatly enhance our ability to understand, predict, and manipulate SAM, containing the stem cells that give rise to all above ground parts of a plant.展开更多
The breadth of the enrichment site for post-translational trimethylation of histone H3 at lysine 4 (H3K4me3) on chromatin has attracted great attention recently. H3K4me3, an extensively-studied histone modification,...The breadth of the enrichment site for post-translational trimethylation of histone H3 at lysine 4 (H3K4me3) on chromatin has attracted great attention recently. H3K4me3, an extensively-studied histone modification, is reported to promote gene transcription by directing preinitiation complex assembly through interaction with effector proteins, e.g.,展开更多
Saffron,the dried stigma of Crocus sativus L.,findsnumerous applications in TCM.Here,a novel HPLC protocol was established and applied for the analysis of saffron samples,not only from different places of origin but a...Saffron,the dried stigma of Crocus sativus L.,findsnumerous applications in TCM.Here,a novel HPLC protocol was established and applied for the analysis of saffron samples,not only from different places of origin but also from several harvest seasons.One of the main active constituents of saffron,crocin,is also contained in展开更多
The V-MYC avian myelocytomatosis viral-related onco- gene, a neuroblastoma-derived gene (MYCN, MIM: 164840) located on chromosome 2p24, was previously found to be associated with Feingold syndrome 1 (FGLDS1, MIM:...The V-MYC avian myelocytomatosis viral-related onco- gene, a neuroblastoma-derived gene (MYCN, MIM: 164840) located on chromosome 2p24, was previously found to be associated with Feingold syndrome 1 (FGLDS1, MIM: 164280) [1]. FGLDS1 is an autosomal dominant disorder characterized by variable combinations of microcephaly, limb malformations, esophageal and duodenal atresias, and learning disabilities. Cardiac and renal malformations, vertebral anomalies, and deafness have also been described in a minority of patients [2]. Despite the involvement of intellectual disability in FGLDS1, the molecular mechanisms of the MYCN gene in regulating brain development remain largely unclear.Some truncated mutations in the N terminus of the MYCN have been identified in FGLDS1 [1, 3].展开更多
文摘Fasciclin-like arabinogalactan proteins(FLAs),a subclass of arabinogalactan proteins(AGPs),are usually involved in cell development in plants.To investigate the expression profiling as well
基金supported by grants from the DFG(German Research Council)Novartis Pharma Gmb H(Nürnberg+2 种基金Germany)Baxter Innovations Gmb H(ViennaGermany)
文摘Schwann cells are the myelinating glial cells of the peripheral nervous system(PNS).By establishing lipid-rich myelin sheaths around large-caliber axons,they ensure that electrical signal transmission is accelerated-a process referred to as saltatory signal propagation.Apart from this prominent physiological function,these cells also exert important pathophysiological roles in PNS injuries or dis- eases. In contrast to the central nervous system (CNS), the adult PNS retains a remarkably high degree of intrinsic re- generation. As a consequence, transected axons and dam- aged myelin sheaths can be repaired and nerve functional- ity can be restored. This spontaneous regenerative capacity depends on (inter) actions of macrophages, neurons, and Schwann cells.
文摘Dihydrofolate reductase (DHFR) is an enzyme that catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). Chemotherapy drugs such as methotrexate help to slow the progression of cancer by limiting the ability of dividing cells to make nucleotides by competitively inhibiting DHFR. Nonsteroidal anti-inflammatory drugs (NSAIDs) have been previously reported to exhibit competitive inhibition of DHFR, in addition to their primary action on cyclooxygenase enzymes. This interaction interferes with the enzymatic reduction of dihydrofolate to tetrahydrofolate, thereby impeding the folate metabolism pathway essential for nucleotide synthesis and cell proliferation. This activity stems from their structural resemblance to the p-aminobenzoyl-l-glutamate (pABG) moiety of folate, a substrate of DHFR. It has been established that NSAIDs containing a salicylate group (which has structural similarities to pABG), such as diflunisal, exhibit stronger DHFR-binding activity. In this study, we synthesized salicylate derivatives of naproxen with the aim of exploring their potential as inhibitors of DHFR. The interactions between these derivatives and human DHFR were characterized using a combination of biochemical, biophysical, and structural methods. Through polyacrylamide gel electrophoresis (PAGE) analysis, enzymatic assays, and quantitative ELISA, we investigated the binding affinity and inhibitory potency of the synthesized salicylate derivatives towards DHFR. The findings of this study suggest the potential of salicylate derivatives of naproxen as promising candidates for the inhibition of DHFR, thereby offering novel therapeutic opportunities for modulating the inflammatory process through multiple pathways. Further optimization of these derivatives could lead to the development of more efficacious dual-targeted analogs with enhanced therapeutic benefits.
基金supported by the US National Science Foundation (IOB0616096 and MCB0744752)supported by the University of Maryland Agricultural Experiment Station
文摘Microscopic imaging of fluorescent reporters for key meristem regulators in live tissues is emerging as a powerful technique, enabling researchers to observe dynamic spatial and temporal distribution of hormonal and developmental regulators in living cells. Aided by time-lapse microphotography, new types of imaging acquisition and analysis software, and computational modeling, we are gaining significant insights into shoot apical meristem (SAM) behavior and function. This review is focused on summarizing recent advances in the understanding of SAM organization, development, and behavior derived from live-imaging techniques. This includes the revelation of mechanical forces in microtubule-controlled anisotropic growth, the role of the CLV-WUS network in the specification of peripheral zone and central zone cells, the multiple feedback loops involving cytokinin in controlling WUS expression, auxin dynamics in determining the position of new primordia, and, finally, sequence of regulatory events leading to de novo assembly of shoots from callus in culture. Future studies toward formulating "digital SAM" that incorporates multi-dimensional data ranging from images of SAM morphogenesis to a genome-scale expression map of SAM will greatly enhance our ability to understand, predict, and manipulate SAM, containing the stem cells that give rise to all above ground parts of a plant.
基金supported by faculty start up funding provided by The Methodist Hospital Research Institute,Texas,United States
文摘The breadth of the enrichment site for post-translational trimethylation of histone H3 at lysine 4 (H3K4me3) on chromatin has attracted great attention recently. H3K4me3, an extensively-studied histone modification, is reported to promote gene transcription by directing preinitiation complex assembly through interaction with effector proteins, e.g.,
文摘Saffron,the dried stigma of Crocus sativus L.,findsnumerous applications in TCM.Here,a novel HPLC protocol was established and applied for the analysis of saffron samples,not only from different places of origin but also from several harvest seasons.One of the main active constituents of saffron,crocin,is also contained in
基金supported by grants from the National Natural Science Foundation of China(81701494)the Shanghai Municipal Commission of Health and Family Planning(2013ZYJB0015)the Science and Technology Commission of Shanghai Municipality(14411950402)
文摘The V-MYC avian myelocytomatosis viral-related onco- gene, a neuroblastoma-derived gene (MYCN, MIM: 164840) located on chromosome 2p24, was previously found to be associated with Feingold syndrome 1 (FGLDS1, MIM: 164280) [1]. FGLDS1 is an autosomal dominant disorder characterized by variable combinations of microcephaly, limb malformations, esophageal and duodenal atresias, and learning disabilities. Cardiac and renal malformations, vertebral anomalies, and deafness have also been described in a minority of patients [2]. Despite the involvement of intellectual disability in FGLDS1, the molecular mechanisms of the MYCN gene in regulating brain development remain largely unclear.Some truncated mutations in the N terminus of the MYCN have been identified in FGLDS1 [1, 3].